Difference between revisions of "2016 AIME I Problems/Problem 15"
Mathgeek2006 (talk | contribs) (→Solution) |
m (→Solution 1) |
||
Line 11: | Line 11: | ||
<cmath>\angle AEX = \angle ABX = \angle XCB = \angle XYB</cmath>and | <cmath>\angle AEX = \angle ABX = \angle XCB = \angle XYB</cmath>and | ||
<cmath>\angle XEB = \angle XAB = \angle XDA = \angle XYA.</cmath>Thus <math>AY \parallel EB</math> and <math>YB \parallel EA</math>, so <math>AEBY</math> is a parallelogram. Hence <math>AS = SB</math> and <math>SE = SY</math>. But notice that <math>DXE</math> and <math>EXC</math> are similar by <math>AA</math> Similarity, so <math>XE^2 = XD \cdot XC = 37 \cdot 67</math>. But | <cmath>\angle XEB = \angle XAB = \angle XDA = \angle XYA.</cmath>Thus <math>AY \parallel EB</math> and <math>YB \parallel EA</math>, so <math>AEBY</math> is a parallelogram. Hence <math>AS = SB</math> and <math>SE = SY</math>. But notice that <math>DXE</math> and <math>EXC</math> are similar by <math>AA</math> Similarity, so <math>XE^2 = XD \cdot XC = 37 \cdot 67</math>. But | ||
− | <cmath>XE^2 - XY^2 = (XE + XY)(XE - XY) = EY \cdot 2XS = 2SY \cdot 2SX = 4SA^2 = AB^2.</cmath>Hence <math>AB^2 = 37 \cdot 67 - 47^2 = 270.</math> | + | <cmath>XE^2 - XY^2 = (XE + XY)(XE - XY) = EY \cdot 2XS = 2SY \cdot 2SX = 4SA^2 = AB^2.</cmath>Hence <math>AB^2 = 37 \cdot 67 - 47^2 = \boxed{270}.</math> |
− | |||
===Solution 2=== | ===Solution 2=== |
Revision as of 16:36, 15 June 2016
Contents
[hide]Problem
Circles and
intersect at points
and
. Line
is tangent to
and
at
and
, respectively, with line
closer to point
than to
. Circle
passes through
and
intersecting
again at
and intersecting
again at
. The three points
,
,
are collinear,
,
, and
. Find
.
Solution
Solution 1
By the Radical Axis Theorem concur at point
.
Let and
intersect at
. Note that because
and
are cyclic, by Miquel's Theorem
is cyclic as well. Thus
and
Thus
and
, so
is a parallelogram. Hence
and
. But notice that
and
are similar by
Similarity, so
. But
Hence
Solution 2
First, we note that as and
have bases along the same line,
. We can also find the ratio of their areas using the circumradius area formula. If
is the radius of
and if
is the radius of
, then
Since we showed this to be
, we see that
.
We extend and
to meet at point
, and we extend
and
to meet at point
as shown below.
As
is cyclic, we know that
. But then as
is tangent to
at
, we see that
. Therefore,
, and
. A similar argument shows
. These parallel lines show
. Also, we showed that
, so the ratio of similarity between
and
is
, or rather
We can now use the parallel lines to find more similar triangles. As
, we know that
Setting
, we see that
, hence
, and the problem simplifies to finding
. Setting
, we also see that
, hence
. Also, as
, we find that
As
, we see that
, hence
.
Applying Power of a Point to point with respect to
, we find
or
. We wish to find
.
Applying Stewart's Theorem to , we find
We can cancel
from both sides, finding
. Therefore,
See Also
2016 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 14 |
Followed by Last Question | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.