Difference between revisions of "2008 AMC 12B Problems/Problem 19"

(Solution)
(Solution)
Line 8: Line 8:
  
 
\begin{align*}
 
\begin{align*}
\textrm{Im}(f(1)) & = i+i\textrm{Im}(\alpha)+i\textrm{Im}(\gamma)<math>
+
\textrm{Im}(f(1)) & = i+i\textrm{Im}(\alpha)+i\textrm{Im}(\gamma) \
\textrm{Im}(f(i)) & = -i+i\textrm{Re}(\alpha)+i\textrm{Im}(\gamma)</math>
+
\textrm{Im}(f(i)) & = -i+i\textrm{Re}(\alpha)+i\textrm{Im}(\gamma)
 
\end{align*}
 
\end{align*}
  

Revision as of 12:41, 9 September 2016

Problem 19

A function $f$ is defined by $f(z) = (4 + i) z^2 + \alpha z + \gamma$ for all complex numbers $z$, where $\alpha$ and $\gamma$ are complex numbers and $i^2 = - 1$. Suppose that $f(1)$ and $f(i)$ are both real. What is the smallest possible value of $| \alpha | + |\gamma |$ ?

$\textbf{(A)} \; 1 \qquad \textbf{(B)} \; \sqrt {2} \qquad \textbf{(C)} \; 2 \qquad \textbf{(D)} \; 2 \sqrt {2} \qquad \textbf{(E)} \; 4 \qquad$

Solution

We need only concern ourselves with the imaginary portions of $f(1)$ and $f(i)$ (both of which must be 0). These are:

Im(f(1))=i+iIm(α)+iIm(γ)Im(f(i))=i+iRe(α)+iIm(γ)

Let $p=\textrm{Im}(\gamma)$ and $q=\textrm{Re}{\gamma},$ then we know $\textrm{Im}(\alpha)=-p-1$ and $\textrm{Re}(\alpha)=1-p.$ Therefore

\[|\alpha|+|\gamma|=\sqrt{(1-p)^2+(-1-p)^2}+\sqrt{q^2+p^}=\sqrt{2p^2+2}+\sqrt{p^2+q^2},\] (Error compiling LaTeX. Unknown error_msg)

which reaches its minimum $\sqrt 2$ when $p=q=0.$ So the answer is $\boxed B.$

See Also

2008 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 18
Followed by
Problem 20
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png