Difference between revisions of "1983 AHSME Problems/Problem 18"
Line 7: | Line 7: | ||
(A) <math>x^4 + 5x^2 + 1</math> (B) <math>x^4 + x^2 - 3</math> (C) <math>x^4 - 5x^2 + 1</math> (D) <math>x^4 + x^2 + 3</math> (E) none of these | (A) <math>x^4 + 5x^2 + 1</math> (B) <math>x^4 + x^2 - 3</math> (C) <math>x^4 - 5x^2 + 1</math> (D) <math>x^4 + x^2 + 3</math> (E) none of these | ||
Let <math>y = x^2 + 1</math>. Then <math>x^2 = y - 1</math>, so we can write the given equation as | Let <math>y = x^2 + 1</math>. Then <math>x^2 = y - 1</math>, so we can write the given equation as | ||
− | + | \begin{align*} | |
f(y) &= x^4 + 5x^2 + 3 \ | f(y) &= x^4 + 5x^2 + 3 \ | ||
&= (x^2)^2 + 5x^2 + 3 \ | &= (x^2)^2 + 5x^2 + 3 \ | ||
Line 13: | Line 13: | ||
&= y^2 - 2y + 1 + 5y - 5 + 3 \ | &= y^2 - 2y + 1 + 5y - 5 + 3 \ | ||
&= y^2 + 3y - 1. | &= y^2 + 3y - 1. | ||
− | \end{align*} | + | \end{align*} |
Then substituting <math>x^2 - 1</math>, we get | Then substituting <math>x^2 - 1</math>, we get | ||
\begin{align*} | \begin{align*} |
Revision as of 13:20, 23 October 2016
Problem: Let be a polynomial function such that, for all real , For all real , is
Solution:
(A) (B) (C) (D) (E) none of these
Let . Then , so we can write the given equation as