Difference between revisions of "2016 AIME II Problems/Problem 7"
m |
|||
Line 1: | Line 1: | ||
− | Squares <math>ABCD</math> and <math>EFGH</math> have a common center | + | Squares <math>ABCD</math> and <math>EFGH</math> have a common center and <math>\overline{AB} || \overline{EF}</math>. The area of <math>ABCD</math> is 2016, and the area of <math>EFGH</math> is a smaller positive integer. Square <math>IJKL</math> is constructed so that each of its vertices lies on a side of <math>ABCD</math> and each vertex of <math>EFGH</math> lies on a side of <math>IJKL</math>. Find the difference between the largest and smallest positive integer values for the area of <math>IJKL</math>. |
==Solution== | ==Solution== |
Revision as of 22:34, 22 December 2016
Squares and have a common center and . The area of is 2016, and the area of is a smaller positive integer. Square is constructed so that each of its vertices lies on a side of and each vertex of lies on a side of . Find the difference between the largest and smallest positive integer values for the area of .
Solution
Letting and , we have by CS inequality. Also, since , the angles that each square cuts another are equal, so all the triangles are formed by a vertex of a larger square and adjacent vertices of a smaller square are similar. Therefore, the areas form a geometric progression, so since , we have the maximum area is and the minimum area is , so the desired answer is .
Solution by Shaddoll
See also
2016 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 6 |
Followed by Problem 8 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |