Difference between revisions of "1983 AHSME Problems/Problem 18"
Line 9: | Line 9: | ||
Let <math>y = x^2 + 1</math>. Then <math>x^2 = y - 1</math>, so we can write the given equation as | Let <math>y = x^2 + 1</math>. Then <math>x^2 = y - 1</math>, so we can write the given equation as | ||
− | \begin{align*} | + | <math>\begin{align*} |
f(y) &= x^4 + 5x^2 + 3 \ | f(y) &= x^4 + 5x^2 + 3 \ | ||
&= (x^2)^2 + 5x^2 + 3 \ | &= (x^2)^2 + 5x^2 + 3 \ | ||
Line 15: | Line 15: | ||
&= y^2 - 2y + 1 + 5y - 5 + 3 \ | &= y^2 - 2y + 1 + 5y - 5 + 3 \ | ||
&= y^2 + 3y - 1. | &= y^2 + 3y - 1. | ||
− | \end{align*} | + | \end{align*}</math> |
Then substituting <math>x^2 - 1</math>, we get | Then substituting <math>x^2 - 1</math>, we get | ||
− | \begin{align*} | + | <math>\begin{align*} |
f(x^2 - 1) &= (x^2 - 1)^2 + 3(x^2 - 1) - 1 \ | f(x^2 - 1) &= (x^2 - 1)^2 + 3(x^2 - 1) - 1 \ | ||
&= x^4 - 2x^2 + 1 + 3x^2 - 3 - 1 \ | &= x^4 - 2x^2 + 1 + 3x^2 - 3 - 1 \ | ||
&= \boxed{x^4 + x^2 - 3}. | &= \boxed{x^4 + x^2 - 3}. | ||
− | \end{align*} | + | \end{align*}</math> |
The answer is (B). | The answer is (B). |
Revision as of 13:55, 1 July 2017
Problem: Let be a polynomial function such that, for all real , For all real , is
(A) (B) (C) (D) (E) none of these
Solution:
Let . Then , so we can write the given equation as
$