Difference between revisions of "1988 AIME Problems/Problem 9"
(→Solution) |
Randomsolver (talk | contribs) (→Solution) |
||
Line 6: | Line 6: | ||
*<math>4</math>: Then our cube must be in the form of <math>(100k + 42)^3 \equiv 3(100k)(42)^2 + 42^3 \equiv 200k + 88 \pmod{1000}</math>. Hence the lowest possible value for the hundreds digit is <math>4</math>, and so <math>442</math> is a valid solution. | *<math>4</math>: Then our cube must be in the form of <math>(100k + 42)^3 \equiv 3(100k)(42)^2 + 42^3 \equiv 200k + 88 \pmod{1000}</math>. Hence the lowest possible value for the hundreds digit is <math>4</math>, and so <math>442</math> is a valid solution. | ||
*<math>9</math>: Then our cube is <math>(100k + 92)^3 \equiv 3(100k)(92)^2 + 92^3 \equiv 200k + 688 \pmod{1000}</math>. The lowest possible value for the hundreds digit is <math>1</math>, and we get <math>192</math>. Hence, since <math>192 < 442</math>, the answer is <math>\fbox{192}</math> | *<math>9</math>: Then our cube is <math>(100k + 92)^3 \equiv 3(100k)(92)^2 + 92^3 \equiv 200k + 688 \pmod{1000}</math>. The lowest possible value for the hundreds digit is <math>1</math>, and we get <math>192</math>. Hence, since <math>192 < 442</math>, the answer is <math>\fbox{192}</math> | ||
+ | |||
+ | ==Solution 2== | ||
+ | <math>n^3 \equiv 888 \pmod{1000} \implies n^3 \equiv 0 \pmod 8</math> and <math>n^3 \equiv 13 \pmod{125}</math>. | ||
+ | <math>n \equiv 2 \pmod 5</math> due to the last digit of <math>n^3</math>. Let <math>n = 5a + 2</math>. By expanding, <math>125a^3 + 150a^2 + 60a + 8 \equiv 13 \pmod{125} \implies 5a^2 + 12a \equiv 1 \pmod{25}</math>. | ||
+ | |||
+ | By looking at the last digit again, we see <math>a \equiv 3 \pmod5</math>, so we let <math>a = 5a_1 + 3</math> where <math>a_1 \in \mathbb{Z^+}</math>. Plugging this in to <math>5a^2 + 12a \equiv 1 \pmod{25}</math> gives <math>10a_1 + 6 \equiv 1 \pmod{25}</math>. Obviously, <math>a_1 \equiv 2 \pmod 5</math>, so we let <math>a_1 = 5a_2 + 2</math> where <math>a_2</math> can be any non-negative integer. | ||
+ | |||
+ | Therefore, <math>n = 2 + 5(3+ 5(2+5a_2)) = 125a_2 + 67</math>. <math>n</math> must also be a multiple of <math>8</math>, so <math>125a_2 + 67 \equiv 5a_2 + 3 \pmod 8 \implies a_2 = 1,9,17 \ldots</math>. Therefore, the minimum of <math>n</math> is <math>125 + 67 = \boxed{192}</math>. | ||
== See also == | == See also == |
Revision as of 20:30, 19 September 2017
Contents
[hide]Problem
Find the smallest positive integer whose cube ends in .
Solution
A little bit of checking tells us that the units digit must be 2. Now our cube must be in the form of ; using the binomial theorem gives us . Since we are looking for the tens digit, we get . This is true if the tens digit is either or . Casework:
- : Then our cube must be in the form of . Hence the lowest possible value for the hundreds digit is , and so is a valid solution.
- : Then our cube is . The lowest possible value for the hundreds digit is , and we get . Hence, since , the answer is
Solution 2
and . due to the last digit of . Let . By expanding, .
By looking at the last digit again, we see , so we let where . Plugging this in to gives . Obviously, , so we let where can be any non-negative integer.
Therefore, . must also be a multiple of , so . Therefore, the minimum of is .
See also
1988 AIME (Problems • Answer Key • Resources) | ||
Preceded by Problem 8 |
Followed by Problem 10 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.