Difference between revisions of "1991 AHSME Problems/Problem 27"

m (Solution)
(Added a solution with explanation)
Line 6: Line 6:
  
 
== Solution ==
 
== Solution ==
Solution by e_power_pi_times_i
+
We have <math>\frac{1}{x-\sqrt{x^2-1}} = \frac{x+\sqrt{x^2-1}}{x^2-(x^2-1)} = x+\sqrt{x^2-1}.</math> Hence the given equation becomes <math>2(x+\sqrt{x^2-1}) = 20 \implies x+\sqrt{x^2-1} = 10.</math> Thus <math>\frac{1}{x-\sqrt{x^2-1}} = 10</math>, so <math>x-\sqrt{x^2-1} = \frac{1}{10}</math>. Adding this to <math>x+\sqrt{x^2-1} = 10</math> gives <math>2x = 10 + \frac{1}{10} \implies x = \frac{101}{20}.</math> Now the quantity we need to find is <math>x^2+\sqrt{x^4-1}+\frac{1}{x^2+\sqrt{x^4-1}} = x^2 + \sqrt{x^4-1} + \frac{x^2 - \sqrt{x^4-1}}{x^4 - (x^4 - 1)} = 2x^2 = 2(\frac{101}{20})^2 = 51.005</math>, which is <math>\boxed{C}.</math>
 
 
 
 
Notice that the first equation equates to <math>\dfrac{x^2 - (x^2 - 1) + 1}{x - \sqrt{x^2 - 1}} = 20</math>. Therefore
 
 
 
 
== See also ==
 
== See also ==
 
{{AHSME box|year=1991|num-b=26|num-a=28}}   
 
{{AHSME box|year=1991|num-b=26|num-a=28}}   

Revision as of 05:02, 24 February 2018

Problem

If $x+\sqrt{x^2-1}+\frac{1}{x-\sqrt{x^2-1}}=20$ then $x^2+\sqrt{x^4-1}+\frac{1}{x^2+\sqrt{x^4-1}}=$

(A) $5.05$ (B) $20$ (C) $51.005$ (D) $61.25$ (E) $400$

Solution

We have $\frac{1}{x-\sqrt{x^2-1}} = \frac{x+\sqrt{x^2-1}}{x^2-(x^2-1)} = x+\sqrt{x^2-1}.$ Hence the given equation becomes $2(x+\sqrt{x^2-1}) = 20 \implies x+\sqrt{x^2-1} = 10.$ Thus $\frac{1}{x-\sqrt{x^2-1}} = 10$, so $x-\sqrt{x^2-1} = \frac{1}{10}$. Adding this to $x+\sqrt{x^2-1} = 10$ gives $2x = 10 + \frac{1}{10} \implies x = \frac{101}{20}.$ Now the quantity we need to find is $x^2+\sqrt{x^4-1}+\frac{1}{x^2+\sqrt{x^4-1}} = x^2 + \sqrt{x^4-1} + \frac{x^2 - \sqrt{x^4-1}}{x^4 - (x^4 - 1)} = 2x^2 = 2(\frac{101}{20})^2 = 51.005$, which is $\boxed{C}.$

See also

1991 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 26
Followed by
Problem 28
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png