Difference between revisions of "1987 AHSME Problems/Problem 20"
Johnhankock (talk | contribs) (→Solution) |
(LaTeXed Solution 2) |
||
(One intermediate revision by one other user not shown) | |||
Line 14: | Line 14: | ||
== Solution 2 == | == Solution 2 == | ||
− | We have log(sin | + | We have <math>\log{(\frac{\sin 1^\circ}{\cos 1^\circ} \times \frac{\sin 2^\circ}{\cos 2^\circ} \times ... \times \frac{\sin 89^\circ}{\cos 89^\circ})}</math>. However, <math>\sin{(x)} = \cos{(90^\circ - x)}</math>. Thus each pair of <math>\sin, \cos</math> (for example, <math>\sin{1^\circ}, \cos{89^\circ}</math>) multiplies to <math>1</math>. Hence we have <math>\log{1} = 0</math>. |
== See also == | == See also == |
Latest revision as of 11:42, 31 March 2018
Contents
[hide]Problem
Evaluate
Solution
Because , , and , the answer is
Solution 2
We have . However, . Thus each pair of (for example, ) multiplies to . Hence we have .
See also
1987 AHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 19 |
Followed by Problem 21 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.