Difference between revisions of "1985 AHSME Problems/Problem 10"

m (Fixed the problem statement)
Line 1: Line 1:
 
==Problem==
 
==Problem==
An arbitrary [[circle]] can intersect the [[graph]] <math> y=\sin x </math> in
+
An arbitrary [[circle]] can intersect the [[graph]] of <math> y=\sin x </math> in
  
<math> \mathrm{(A) } \text{at most }2\text{ points} \qquad \mathrm{(B) }\text{at most }4\text{ points} \qquad \mathrm{(C)   } \text{at most }6\text{ points} \qquad \mathrm{(D) } \text{at most }8\text{ points}\qquad \mathrm{(E)   }\text{more than }16\text{ points}  </math>
+
<math> \mathrm{(A) \ } \text{at most }2\text{ points} \qquad \mathrm{(B) \ }\text{at most }4\text{ points} \qquad \mathrm{(C) } \text{at most }6\text{ points} \qquad \mathrm{(D) \ } \text{at most }8\text{ points}\qquad \mathrm{(E) }\text{more than }16\text{ points}  </math>
  
 
==Solution==
 
==Solution==

Revision as of 23:48, 2 April 2018

Problem

An arbitrary circle can intersect the graph of $y=\sin x$ in

$\mathrm{(A) \ } \text{at most }2\text{ points} \qquad \mathrm{(B) \ }\text{at most }4\text{ points} \qquad \mathrm{(C) \  } \text{at most }6\text{ points} \qquad \mathrm{(D) \ } \text{at most }8\text{ points}\qquad \mathrm{(E) \  }\text{more than }16\text{ points}$

Solution

Consider a circle with center on the positive y-axis and that passes through the origin. As the radius of this circle becomes arbitrarily large, its shape near the x-axis becomes very similar to that of $y=0$, which intersects $y=\sin x$ infinitely many times. It therefore becomes obvious that we can pick a radius large enough so that the circle intersects the sinusoid as many times as we wish, $\boxed{\text{E}}$.

See Also

1985 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 9
Followed by
Problem 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png