Difference between revisions of "2014 USAJMO Problems/Problem 1"
(→Problem) |
Expilncalc (talk | contribs) m (→Solution) |
||
(One intermediate revision by one other user not shown) | |||
Line 3: | Line 3: | ||
==Solution== | ==Solution== | ||
− | Since <math>(a-1)^5\ | + | Since <math>(a-1)^5\ge 0</math>, |
− | <cmath>a^5-5a^4+10a^3-10a^2+5a-1\ | + | <cmath>a^5-5a^4+10a^3-10a^2+5a-1\ge 0</cmath> |
or | or | ||
− | <cmath>10a^2-5a+1\ | + | <cmath>10a^2-5a+1\le a^3(a^2-5a+10)</cmath> |
− | Since <math>a^2-5a+10=\left( a-\dfrac{5}{2}\right)^2 +\dfrac{15}{4} | + | Since <math>a^2-5a+10=\left( a-\dfrac{5}{2}\right)^2 +\dfrac{15}{4}>0</math>, |
− | <cmath> \frac{10a^2-5a+1}{a^2-5a+10}\ | + | <cmath> \frac{10a^2-5a+1}{a^2-5a+10}\le a^3 </cmath> |
− | Also note that <math>10a^2-5a+1=10\left( a-\dfrac{1}{4}\right)^2+\dfrac{3}{8} | + | Also note that <math>10a^2-5a+1=10\left( a-\dfrac{1}{4}\right)^2+\dfrac{3}{8}> 0</math>, |
We conclude | We conclude | ||
− | <cmath>0\ | + | <cmath>0\le \frac{10a^2-5a+1}{a^2-5a+10}\le a^3</cmath> |
Similarly, | Similarly, | ||
− | <cmath>0\ | + | <cmath>0\le \frac{10b^2-5b+1}{b^2-5b+10}\le b^3</cmath> |
− | <cmath>0\ | + | <cmath>0\le \frac{10c^2-5c+1}{c^2-5c+10}\le c^3</cmath> |
− | So <cmath>\left(\frac{10a^2-5a+1}{a^2-5a+10}\right)\left(\frac{10b^2-5b+1}{b^2-5b+10}\right)\left(\frac{10c^2-5c+1}{c^2-5c+10}\right)\ | + | So <cmath>\left(\frac{10a^2-5a+1}{a^2-5a+10}\right)\left(\frac{10b^2-5b+1}{b^2-5b+10}\right)\left(\frac{10c^2-5c+1}{c^2-5c+10}\right)\le a^3b^3c^3</cmath> |
or | or | ||
− | <cmath>\left(\frac{10a^2-5a+1}{b^2-5b+10}\right)\left(\frac{10b^2-5b+1}{c^2-5c+10}\right)\left(\frac{10c^2-5c+1}{a^2-5a+10}\right) \ | + | <cmath>\left(\frac{10a^2-5a+1}{b^2-5b+10}\right)\left(\frac{10b^2-5b+1}{c^2-5c+10}\right)\left(\frac{10c^2-5c+1}{a^2-5a+10}\right) \le(abc)^3</cmath> |
Therefore, | Therefore, | ||
− | <cmath> \min\left(\frac{10a^2-5a+1}{b^2-5b+10},\frac{10b^2-5b+1}{c^2-5c+10},\frac{10c^2-5c+1}{a^2-5a+10}\right )\ | + | <cmath> \min\left(\frac{10a^2-5a+1}{b^2-5b+10},\frac{10b^2-5b+1}{c^2-5c+10},\frac{10c^2-5c+1}{a^2-5a+10}\right )\le abc. </cmath> |
Latest revision as of 20:23, 15 April 2018
Problem
Let , , be real numbers greater than or equal to . Prove that
Solution
Since , or Since , Also note that , We conclude Similarly, So or Therefore,