Difference between revisions of "2018 AIME I Problems/Problem 11"
m (→Solution 3) |
(→Modular Arithmetic Solution- Strange (MASS)) |
||
Line 4: | Line 4: | ||
==Modular Arithmetic Solution- Strange (MASS)== | ==Modular Arithmetic Solution- Strange (MASS)== | ||
− | Note that <math>3^n \equiv 1 \pmod{143^2}</math> and <math>143=11\cdot 13</math>. Because <math>gcd(11^2, 13^2) = 1</math>, the desired condition is equivalent to <math>3^n \equiv 1 \pmod{121}</math> and <math>3^n \equiv 1 \pmod{169}</math>. | + | Note that the given condition is equivalent to <math>3^n \equiv 1 \pmod{143^2}</math> and <math>143=11\cdot 13</math>. Because <math>gcd(11^2, 13^2) = 1</math>, the desired condition is equivalent to <math>3^n \equiv 1 \pmod{121}</math> and <math>3^n \equiv 1 \pmod{169}</math>. |
If <math>3^n \equiv 1 \pmod{121}</math>, one can see the sequence <math>1, 3, 9, 27, 81, 1, 3, 9...</math> so <math>5|n</math>. | If <math>3^n \equiv 1 \pmod{121}</math>, one can see the sequence <math>1, 3, 9, 27, 81, 1, 3, 9...</math> so <math>5|n</math>. |
Revision as of 19:24, 18 April 2018
Find the least positive integer such that when is written in base , its two right-most digits in base are .
Contents
[hide]Solutions
Modular Arithmetic Solution- Strange (MASS)
Note that the given condition is equivalent to and . Because , the desired condition is equivalent to and .
If , one can see the sequence so .
Now if , it is harder. But we do observe that , therefore for some integer . So our goal is to find the first number such that . In other words, the . It is not difficult to see that the smallest , so ultimately . Therefore, .
The first satisfying both criteria is thus .
-expiLnCalc
Solution 2
Note that Euler's Totient Theorem would not necessarily lead to the smallest and that in this case that is greater than .
We wish to find the least such that . This factors as . Because , we can simply find the least such that and .
Quick inspection yields and . Now we must find the smallest such that . Euler's gives . So is a factor of . This gives . Some more inspection yields is the smallest valid . So and . The least satisfying both is . (RegularHexagon)
Solution 3 (Slight Bash)
Listing out the powers of , modulo and modulo , we have:
The powers of repeat in cycles of an in modulo and modulo , respectively. The answer is .
See Also
2018 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 10 |
Followed by Problem 12 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.