Difference between revisions of "2018 AIME I Problems/Problem 11"
(→Modular Arithmetic Solution- Strange (MASS)) |
(→Solution 3 (Slight Bash)) |
||
Line 21: | Line 21: | ||
Quick inspection yields <math>3^5 \equiv 1 \pmod{121}</math> and <math>3^3 \equiv 1 \pmod{13}</math>. Now we must find the smallest <math>k</math> such that <math>3^{3k} \equiv 1 \pmod{13}</math>. Euler's gives <math>3^{156} \equiv 1 \pmod{169}</math>. So <math>3k</math> is a factor of <math>156</math>. This gives <math>k=1,2, 4, 13, 26, 52</math>. Some more inspection yields <math>k=13</math> is the smallest valid <math>k</math>. So <math>3^5 \equiv 1 \pmod{121}</math> and <math>3^{39} \equiv 1 \pmod{169}</math>. The least <math>n</math> satisfying both is <math>lcm(5, 39)=\boxed{195}</math>. (RegularHexagon) | Quick inspection yields <math>3^5 \equiv 1 \pmod{121}</math> and <math>3^3 \equiv 1 \pmod{13}</math>. Now we must find the smallest <math>k</math> such that <math>3^{3k} \equiv 1 \pmod{13}</math>. Euler's gives <math>3^{156} \equiv 1 \pmod{169}</math>. So <math>3k</math> is a factor of <math>156</math>. This gives <math>k=1,2, 4, 13, 26, 52</math>. Some more inspection yields <math>k=13</math> is the smallest valid <math>k</math>. So <math>3^5 \equiv 1 \pmod{121}</math> and <math>3^{39} \equiv 1 \pmod{169}</math>. The least <math>n</math> satisfying both is <math>lcm(5, 39)=\boxed{195}</math>. (RegularHexagon) | ||
− | ==Solution 3 ( | + | ==Solution 3 (BigBash)== |
Listing out the powers of <math>3</math>, modulo <math>169</math> and modulo <math>121</math>, we have: | Listing out the powers of <math>3</math>, modulo <math>169</math> and modulo <math>121</math>, we have: | ||
<cmath>\begin{array}{c|c|c} | <cmath>\begin{array}{c|c|c} |
Revision as of 00:21, 20 April 2018
Find the least positive integer such that when is written in base , its two right-most digits in base are .
Contents
[hide]Solutions
Modular Arithmetic Solution- Strange (MASS)
Note that the given condition is equivalent to and . Because , the desired condition is equivalent to and .
If , one can see the sequence so .
Now if , it is harder. But we do observe that , therefore for some integer . So our goal is to find the first number such that . In other words, the . It is not difficult to see that the smallest , so ultimately . Therefore, .
The first satisfying both criteria is thus .
-expiLnCalc
Solution 2
Note that Euler's Totient Theorem would not necessarily lead to the smallest and that in this case that is greater than .
We wish to find the least such that . This factors as . Because , we can simply find the least such that and .
Quick inspection yields and . Now we must find the smallest such that . Euler's gives . So is a factor of . This gives . Some more inspection yields is the smallest valid . So and . The least satisfying both is . (RegularHexagon)
Solution 3 (BigBash)
Listing out the powers of , modulo and modulo , we have:
The powers of repeat in cycles of an in modulo and modulo , respectively. The answer is .
See Also
2018 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 10 |
Followed by Problem 12 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.