Difference between revisions of "Remainder Theorem"
Rockmanex3 (talk | contribs) m (→Proof) |
Rockmanex3 (talk | contribs) (Extension of Remainder Theorem) |
||
Line 9: | Line 9: | ||
<cmath>p(a) = q(a) \cdot 0 + r(a)</cmath> | <cmath>p(a) = q(a) \cdot 0 + r(a)</cmath> | ||
<cmath>p(a) = r(a)</cmath> | <cmath>p(a) = r(a)</cmath> | ||
+ | |||
+ | ==Extension== | ||
+ | An extension of the Remainder Theorem could be used to find the remainder of a polynomial when it is divided by a non-linear polynomial. Note that if <math>p(x)</math> is a polynomial, <math>q(x)</math> is the quotient, <math>d(x)</math> is a divisor, and <math>r(x)</math> is the remainder, the polynomial can be written as | ||
+ | <cmath>p(x) = q(x)d(x) + r(x)</cmath> | ||
+ | Note that the degree of <math>r(x)</math> is less than the degree of <math>d(x)</math>. Let <math>a_n</math> be a root of <math>d(x)</math>, where <math>n</math> is an integer and <math>1 \le n \le \text{deg } d</math>. That means for all <math>a_n</math>, | ||
+ | <cmath>p(a_n) = r(a_n)</cmath> | ||
+ | Thus, the points <math>(a_n,p(a_n))</math> are on the graph of the remainder. If all the roots of <math>d(x)</math> are unique, then a [[system of equations]] can be made to find the remainder <math>r(x)</math>. | ||
==Examples== | ==Examples== |
Revision as of 01:03, 19 June 2018
Contents
[hide]Theorem
The Remainder Theorem states that the remainder when the polynomial is divided by (usually with synthetic division) is equal to the simplified value of .
Proof
Let , where is the polynomial, is the divisor, is the quotient, and is the remainder. This equation can be rewritten as If , then substituting for results in
Extension
An extension of the Remainder Theorem could be used to find the remainder of a polynomial when it is divided by a non-linear polynomial. Note that if is a polynomial, is the quotient, is a divisor, and is the remainder, the polynomial can be written as Note that the degree of is less than the degree of . Let be a root of , where is an integer and . That means for all , Thus, the points are on the graph of the remainder. If all the roots of are unique, then a system of equations can be made to find the remainder .
Examples
Introductory
- What is the remainder when is divided by ?
Solution: Using synthetic or long division we obtain the quotient . In this case the remainder is . However, we could've figured that out by evaluating . Remember, we want the divisor in the form of . so . .
This article is a stub. Help us out by expanding it.