Difference between revisions of "1973 AHSME Problems/Problem 19"

(Solution to Problem 19)
 
m (See Also)
Line 22: Line 22:
 
{{AHSME 35p box|year=1973|num-b=18|num-a=20}}
 
{{AHSME 35p box|year=1973|num-b=18|num-a=20}}
  
[[Category:
+
[[Category:Introductory Number Theory Problems]]

Revision as of 16:19, 5 July 2018

Problem

Define $n_a!$ for $n$ and $a$ positive to be

\[n_a ! = n (n-a)(n-2a)(n-3a)...(n-ka)\]

where $k$ is the greatest integer for which $n>ka$. Then the quotient $72_8!/18_2!$ is equal to

$\textbf{(A)}\ 4^5 \qquad \textbf{(B)}\ 4^6 \qquad \textbf{(C)}\ 4^8 \qquad \textbf{(D)}\ 4^9 \qquad \textbf{(E)}\ 4^{12}$

Solution

Using the definition of $n_a!$, the quotient can be rewritten as \[\frac{72 \cdot 64 \cdot 56 \cdots 8}{18 \cdot 16 \cdot 14 \cdots 2}\] Note that for a given integer $x$, $\tfrac{72-8x}{18-2x} = 4$. Since $0 \le x \le 8$, the quotient simplifies to $\boxed{\textbf{(D)}\ 4^9}$.

See Also

1973 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 18
Followed by
Problem 20
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
All AHSME Problems and Solutions