Difference between revisions of "1988 AIME Problems/Problem 3"

(Solution 2: Substitution)
(Solution 2: Substitution)
Line 25: Line 25:
 
\begin{align*}
 
\begin{align*}
 
{\log_2 (\frac{1}{3}\log_2 x)} &= \frac{1}{3}{\log_2 (\log_2 x)}\
 
{\log_2 (\frac{1}{3}\log_2 x)} &= \frac{1}{3}{\log_2 (\log_2 x)}\
{\log_2 x = y}
+
{\log_2 x = y}\
 
{\log_2 (\frac{1}{3}y)} &= \frac{1}{3}{\log_2 (y)}\
 
{\log_2 (\frac{1}{3}y)} &= \frac{1}{3}{\log_2 (y)}\
 
{3\log_2 (\frac{1}{3}y)} &= {\log_2 (y)}\  
 
{3\log_2 (\frac{1}{3}y)} &= {\log_2 (y)}\  

Revision as of 14:14, 14 July 2018

Problem

Find $(\log_2 x)^2$ if $\log_2 (\log_8 x) = \log_8 (\log_2 x)$.

Solution 1

Raise both as exponents with base 8:

\begin{align*} 8^{\log_2 (\log_8 x)} &= 8^{\log_8 (\log_2 x)}\\ 2^{3 \log_2(\log_8x)} &= \log_2x\\ (\log_8x)^3 &= \log_2x\\ \left(\frac{\log_2x}{\log_28}\right)^3 &= \log_2x\\ (\log_2x)^2 &= (\log_28)^3 = \boxed{27}\\ \end{align*}


A quick explanation of the steps: On the 1st step, we use the property of logarithms that $a^{\log_a x} = x$. On the 2nd step, we use the fact that $k \log_a x = \log_a x^k$. On the 3rd step, we use the change of base formula, which states $\log_a b = \frac{\log_k b}{\log_k a}$ for arbitrary $k$.

Solution 2: Substitution

We wish to convert this expression into one which has a uniform base. Let's scale down all the powers of 8 to 2.

\begin{align*} {\log_2 (\frac{1}{3}\log_2 x)} &= \frac{1}{3}{\log_2 (\log_2 x)}\\ {\log_2 x = y}\\ {\log_2 (\frac{1}{3}y)} &= \frac{1}{3}{\log_2 (y)}\\ {3\log_2 (\frac{1}{3}y)} &= {\log_2 (y)}\\  \end{align*} Solving, we get $y^2 = 27$, which is what we want. $\boxed{27}$



See also

1988 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 2
Followed by
Problem 4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png