Difference between revisions of "1959 IMO Problems/Problem 5"
m (→Solution) |
m (→Part B: Typo) |
||
Line 19: | Line 19: | ||
=== Part B === | === Part B === | ||
− | We observe that <math> \frac{AM}{MB} = \frac{CM}{MB} = \frac{AN}{NB} </math> since the triangles <math>ABN, | + | We observe that <math> \frac{AM}{MB} = \frac{CM}{MB} = \frac{AN}{NB} </math> since the triangles <math>ABN, BCM</math> are similar. Then <math>NM </math> bisects <math>ANB </math>. |
We now consider the circle with diameter <math>AB </math>. Since <math>ANB </math> is a right angle, <math>N </math> lies on the circle, and since <math>MN </math> bisects <math>ANB </math>, the arcs it intercepts are congruent, i.e., it passes through the bisector of arc <math>AB </math> (going counterclockwise), which is a constant point. | We now consider the circle with diameter <math>AB </math>. Since <math>ANB </math> is a right angle, <math>N </math> lies on the circle, and since <math>MN </math> bisects <math>ANB </math>, the arcs it intercepts are congruent, i.e., it passes through the bisector of arc <math>AB </math> (going counterclockwise), which is a constant point. |
Revision as of 11:17, 20 July 2018
Contents
[hide]Problem
An arbitrary point is selected in the interior of the segment . The squares and are constructed on the same side of , with the segments and as their respective bases. The circles about these squares, with respective centers and , intersect at and also at another point . Let denote the point of intersection of the straight lines and .
(a) Prove that the points and coincide.
(b) Prove that the straight lines pass through a fixed point independent of the choice of .
(c) Find the locus of the midpoints of the segments as varies between and .
Solution
Part A
Since the triangles are congruent, the angles are congruent; hence is a right angle. Therefore must lie on the circumcircles of both quadrilaterals; hence it is the same point as .
Part B
We observe that since the triangles are similar. Then bisects .
We now consider the circle with diameter . Since is a right angle, lies on the circle, and since bisects , the arcs it intercepts are congruent, i.e., it passes through the bisector of arc (going counterclockwise), which is a constant point.
Part C
Denote the midpoint of as . It is clear that 's distance from is the average of the distances of and from , i.e., half the length of , which is a constant. Therefore the locus in question is a line segment.
Alternate solutions are always welcome. If you have a different, elegant solution to this problem, please add it to this page.
See Also
1959 IMO (Problems) • Resources | ||
Preceded by Problem 4 |
1 • 2 • 3 • 4 • 5 • 6 | Followed by Problem 6 |
All IMO Problems and Solutions |