Difference between revisions of "1985 IMO Problems/Problem 1"
Lastovichke (talk | contribs) (→Solution 6) |
Lastovichke (talk | contribs) |
||
Line 45: | Line 45: | ||
− | + | === Solution 6 === | |
+ | Lemma. <math>A_0" | ||
Line 51: | Line 52: | ||
Observations | Observations | ||
− | Observe by take <math>M< | + | Observe by take </math>M<math>, </math>N<math> on </math>AD<math> extended and |
− | <math>BC | + | </math>BC$ |
Revision as of 09:19, 8 October 2018
Contents
[hide]Problem
A circle has center on the side of the cyclic quadrilateral . The other three sides are tangent to the circle. Prove that .
Solutions
Solution 1
Let be the center of the circle mentioned in the problem. Let be the second intersection of the circumcircle of with . By measures of arcs, . It follows that . Likewise, , so , as desired.
Solution 2
Let be the center of the circle mentioned in the problem, and let be the point on such that . Then , so is a cyclic quadrilateral and is in fact the of the previous solution. The conclusion follows.
Solution 3
Let the circle have center and radius , and let its points of tangency with be , respectively. Since is clearly a cyclic quadrilateral, the angle is equal to half the angle . Then
Likewise, . It follows that
,
Q.E.D.
Solution 4
We use the notation of the previous solution. Let be the point on the ray such that . We note that ; ; and ; hence the triangles are congruent; hence and . Similarly, . Therefore , Q.E.D.
Possible solution, maybe bogus?
The only way for AD and BC to be tangent to circle O and have AB pass through O is if and are both 90. But since ABCD is cyclic, the other angles must be 90 as well. Now call the point of tangency of CD E, and since AO=EO, AEOD is a square. Similarily, BCEO is a square, too, so DA=AO and CB=BO. Therefore, AD+BC=AB.
Solution 6
Lemma. $A_0"
{{alternate solutions}}
Observations Observe by take$ (Error compiling LaTeX. Unknown error_msg)MNADBC$
1985 IMO (Problems) • Resources | ||
Preceded by First question |
1 • 2 • 3 • 4 • 5 • 6 | Followed by Problem 2 |
All IMO Problems and Solutions |