Difference between revisions of "2019 AMC 10A Problems/Problem 1"

(Video Solution by T2L Academy)
 
(25 intermediate revisions by 14 users not shown)
Line 1: Line 1:
The first part can be rewritten as <cmath>2^{0^{1}}=2^{0}=1</cmath>.
+
== Problem ==
The second part is <cmath>(1^{1})^{9}=1^{9}=1</cmath>. Adding these up gives (C) <cmath>2</cmath>
+
What is the value of <cmath>2^{\left(0^{\left(1^9\right)}\right)}+\left(\left(2^0\right)^1\right)^9?</cmath>
 +
 
 +
<math>\textbf{(A) } 0 \qquad\textbf{(B) } 1 \qquad\textbf{(C) } 2 \qquad\textbf{(D) } 3 \qquad\textbf{(E) } 4</math>
 +
 
 +
== Solution ==
 +
<math>2^{\left(0^{\left(1^9\right)}\right)}+\left(\left(2^0\right)^1\right)^9= 1+1 = \boxed{\textbf{(C) } 2}</math>.
 +
 
 +
==Video Solution by Education, the Study of Everything==
 +
https://youtu.be/K8je0WYBHFc
 +
 
 +
~Education, The Study Of Everything
 +
 
 +
== Video Solution by WhyMath==
 +
https://youtu.be/Ad8WKcwZcTA
 +
 
 +
~savannahsolver
 +
 
 +
== Video Solution by T2L Academy==
 +
https://youtu.be/OhCy9c2RTFo?si=UPgBHbW5Bn0yxP1s
 +
 
 +
== See Also ==
 +
{{AMC10 box|year=2019|ab=A|before=First Problem|num-a=2}}
 +
{{MAA Notice}}

Latest revision as of 11:55, 16 July 2024

Problem

What is the value of \[2^{\left(0^{\left(1^9\right)}\right)}+\left(\left(2^0\right)^1\right)^9?\]

$\textbf{(A) } 0 \qquad\textbf{(B) } 1 \qquad\textbf{(C) } 2 \qquad\textbf{(D) } 3 \qquad\textbf{(E) } 4$

Solution

$2^{\left(0^{\left(1^9\right)}\right)}+\left(\left(2^0\right)^1\right)^9=  1+1 = \boxed{\textbf{(C) } 2}$.

Video Solution by Education, the Study of Everything

https://youtu.be/K8je0WYBHFc

~Education, The Study Of Everything

Video Solution by WhyMath

https://youtu.be/Ad8WKcwZcTA

~savannahsolver

Video Solution by T2L Academy

https://youtu.be/OhCy9c2RTFo?si=UPgBHbW5Bn0yxP1s

See Also

2019 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
First Problem
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png