Difference between revisions of "2019 AMC 12A Problems/Problem 22"
(Created page with "==Problem== Circles <math>\omega</math> and <math>\gamma</math>, both centered at <math>O</math>, have radii <math>20</math> and <math>17</math>, respectively. Equilateral tr...") |
(→Video Solution) |
||
(5 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
− | Circles <math>\omega</math> and <math>\gamma</math>, both centered at <math>O</math>, have radii <math>20</math> and <math>17</math>, respectively. Equilateral triangle <math>ABC</math>, whose interior lies in the interior of <math>\omega</math> but in the exterior of <math>\gamma</math>, has vertex <math>A</math> on <math>\omega</math>, and the line containing side <math>\overline{BC}</math> is tangent to <math>\gamma</math>. Segments <math>\overline{AO}</math> and <math>\overline{BC}</math> intersect at <math>P</math>, and <math>\dfrac{BP}{CP} = 3</math>. Then <math>AB</math> can be written in the form <math>\dfrac{m}{\sqrt{n}} - \dfrac{p}{\sqrt{q}}</math> for positive integers <math>m</math>, <math>n</math>, <math>p</math>, <math>q</math> with <math>\gcd(m,n) = \gcd(p,q) = 1</math>. What is <math>m+n+p+q</math>? | + | Circles <math>\omega</math> and <math>\gamma</math>, both centered at <math>O</math>, have radii <math>20</math> and <math>17</math>, respectively. Equilateral triangle <math>ABC</math>, whose interior lies in the interior of <math>\omega</math> but in the exterior of <math>\gamma</math>, has vertex <math>A</math> on <math>\omega</math>, and the line containing side <math>\overline{BC}</math> is tangent to <math>\gamma</math>. Segments <math>\overline{AO}</math> and <math>\overline{BC}</math> intersect at <math>P</math>, and <math>\dfrac{BP}{CP} = 3</math>. Then <math>AB</math> can be written in the form <math>\dfrac{m}{\sqrt{n}} - \dfrac{p}{\sqrt{q}}</math> for positive integers <math>m</math>, <math>n</math>, <math>p</math>, <math>q</math> with <math>\text{gcd}(m,n) = \text{gcd}(p,q) = 1</math>. What is <math>m+n+p+q</math>? |
<math>\phantom{}</math> | <math>\phantom{}</math> | ||
Line 7: | Line 7: | ||
==Solution== | ==Solution== | ||
+ | |||
+ | <asy> | ||
+ | size(20cm); | ||
+ | draw(circle((0,0), 20)); | ||
+ | label("$\omega$", (0,0), 4.05*20*dir(149)*20/21); | ||
+ | draw(circle((0,0), 17)); | ||
+ | label("$\gamma$", (0,0), 4.05*17*dir(149)*20/21); | ||
+ | dot((0,0)); | ||
+ | label("$O$", (0,0), E); | ||
+ | pair aa = (-20, 0); | ||
+ | dot(aa); | ||
+ | label("$A$", aa, W); | ||
+ | draw((-20,0)--(0,0)); | ||
+ | real a = (-20 + (80/sqrt(13) - 34/sqrt(3))*(sqrt(13)/sqrt(12))*(sqrt(3)/2)); | ||
+ | real ans = (80/sqrt(13) - 34/sqrt(3)); | ||
+ | dot((a,0)); | ||
+ | label("$P$", (a, 0), dir(290)*0.58); | ||
+ | pair s = ((12*a + 0)/13, 0-sqrt(12)*a/13); | ||
+ | dot(s); | ||
+ | label("$S$", s, dir(135)); | ||
+ | pair c = (a + 1/4*ans*1/sqrt(13), 0 + 1/4*ans*sqrt(12)/sqrt(13)); | ||
+ | dot(c); | ||
+ | label("$C$", c, dir(110)); | ||
+ | pair m = (a - 1/4*ans*1/sqrt(13), 0 - 1/4*ans*sqrt(12)/sqrt(13)); | ||
+ | dot(m); | ||
+ | label("$M$", m, dir(285)); | ||
+ | pair b = (a - 3/4*ans*1/sqrt(13), 0 - 3/4*ans*sqrt(12)/sqrt(13)); | ||
+ | dot(b); | ||
+ | label("$B$", b, S); | ||
+ | draw(b--s); | ||
+ | draw(s--(0,0)); | ||
+ | draw(aa--b); | ||
+ | draw(aa--c); | ||
+ | draw(aa--m); | ||
+ | markscalefactor=0.1; | ||
+ | draw(rightanglemark(s,m,aa,3.4)); | ||
+ | draw(rightanglemark((0,0),s,m,3.4)); | ||
+ | </asy> | ||
+ | |||
+ | Let <math>S</math> be the point of tangency between <math>\overline{BC}</math> and <math>\gamma</math>, and <math>M</math> be the midpoint of <math>\overline{BC}</math>. Note that <math>AM \perp BS</math> and <math>OS \perp BS</math>. This implies that <math>\angle OAM \cong \angle AOS</math>, and <math>\angle AMP \cong \angle OSP</math>. Thus, <math>\triangle PMA \sim \triangle PSO</math>. | ||
+ | |||
+ | If we let <math>s</math> be the side length of <math>\triangle ABC</math>, then it follows that <math>AM = \frac{\sqrt{3}}{2}s</math> and <math>PM = \frac{s}{4}</math>. This implies that <math>AP = \frac{\sqrt{13}}{4}s</math>, so <math>\frac{AM}{AP} = \frac{2\sqrt{3}}{\sqrt{13}}</math>. Furthermore, <math>\frac{AM + SO}{AO} = \frac{AM}{AP}</math> (because <math>\triangle PMA \sim \triangle PSO</math>) so this gives us the equation | ||
+ | <cmath>\frac{\frac{\sqrt{3}}{2}s + 17}{20} = \frac{2\sqrt{3}}{\sqrt{13}}</cmath> | ||
+ | to solve for the side length <math>s</math>, or <math>AB</math>. Thus, | ||
+ | <cmath>\frac{\sqrt{39}}{2}s + 17\sqrt{13} = 40\sqrt{3}</cmath> | ||
+ | <cmath>\frac{\sqrt{39}}{2}s = 40\sqrt{3} - 17\sqrt{13}</cmath> | ||
+ | <cmath>s = \frac{80}{\sqrt{13}} - \frac{34}{\sqrt{3}} = AB</cmath> | ||
+ | The problem asks for <math>m + n + p + q = 80 + 13 + 34 + 3 = \boxed{\textbf{(E) } 130}</math>. | ||
+ | |||
+ | ==Video Solution== | ||
+ | https://www.youtube.com/watch?v=2eASfdhEyUE | ||
+ | |||
+ | Video Solution by Richard Rusczyk - | ||
+ | https://www.youtube.com/watch?v=CaYgfNEUBwA&list=PLyhPcpM8aMvLgfgbaTLDaV_jRYfn1A-x_&index=2 | ||
+ | - AMBRIGGS | ||
==See Also== | ==See Also== |
Latest revision as of 16:03, 30 July 2022
Contents
Problem
Circles and , both centered at , have radii and , respectively. Equilateral triangle , whose interior lies in the interior of but in the exterior of , has vertex on , and the line containing side is tangent to . Segments and intersect at , and . Then can be written in the form for positive integers , , , with . What is ?
Solution
Let be the point of tangency between and , and be the midpoint of . Note that and . This implies that , and . Thus, .
If we let be the side length of , then it follows that and . This implies that , so . Furthermore, (because ) so this gives us the equation to solve for the side length , or . Thus, The problem asks for .
Video Solution
https://www.youtube.com/watch?v=2eASfdhEyUE
Video Solution by Richard Rusczyk - https://www.youtube.com/watch?v=CaYgfNEUBwA&list=PLyhPcpM8aMvLgfgbaTLDaV_jRYfn1A-x_&index=2 - AMBRIGGS
See Also
2019 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 21 |
Followed by Problem 23 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.