Difference between revisions of "2006 AMC 10B Problems/Problem 1"

m
(Problem)
 
(8 intermediate revisions by 6 users not shown)
Line 2: Line 2:
 
What is <math> (-1)^{1} + (-1)^{2} + ... + (-1)^{2006} </math> ?
 
What is <math> (-1)^{1} + (-1)^{2} + ... + (-1)^{2006} </math> ?
  
<math> \mathrm{(A) \ } -2006\qquad \mathrm{(B) \ } -1\qquad \mathrm{(C) \ } 0\qquad \mathrm{(D) \ } 1\qquad \mathrm{(E) \ } 2006 </math>
+
<math> \textbf{(A)} -2006\qquad \textbf{(B)} -1\qquad \textbf{(C) } 0\qquad \textbf{(D) } 1\qquad \textbf{(E) } 2006 </math>
  
 
== Solution ==
 
== Solution ==
Since <math>-1</math> raised to an [[odd integer | odd]] [[exponent]] is <math>-1</math> and <math>-1</math> raised to an [[even integer]] exponent is <math>1</math>:  
+
Since <math>-1</math> raised to an odd integer is <math>-1</math> and <math>-1</math> raised to an even integer exponent is <math>1</math>:  
  
<math> (-1)^{1} + (-1)^{2} + ... + (-1)^{2006} = (-1) + (1) + ... + (-1)+(1) = 0 \Longrightarrow C </math>
+
<math> (-1)^{1} + (-1)^{2} + ... + (-1)^{2006} = (-1) + (1) + ... + (-1)+(1) = \boxed{\textbf{(C) }0}. </math>
  
 
== See Also ==
 
== See Also ==
*[[2006 AMC 10B Problems]]
+
{{AMC10 box|year=2006|ab=B|before=First Problem|num-a=2}}
 
 
*[[2006 AMC 10B Problems/Problem 2|Next Problem]]
 
  
 
[[Category:Introductory Algebra Problems]]
 
[[Category:Introductory Algebra Problems]]
 +
{{MAA Notice}}

Latest revision as of 09:32, 19 December 2021

Problem

What is $(-1)^{1} + (-1)^{2} + ... + (-1)^{2006}$ ?

$\textbf{(A)} -2006\qquad \textbf{(B)} -1\qquad \textbf{(C) } 0\qquad \textbf{(D) } 1\qquad \textbf{(E) } 2006$

Solution

Since $-1$ raised to an odd integer is $-1$ and $-1$ raised to an even integer exponent is $1$:

$(-1)^{1} + (-1)^{2} + ... + (-1)^{2006} = (-1) + (1) + ... + (-1)+(1) = \boxed{\textbf{(C) }0}.$

See Also

2006 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
First Problem
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png