Difference between revisions of "2016 AIME I Problems/Problem 1"

(Solution 1)
(Solution)
 
(2 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 
==Problem 1==
 
==Problem 1==
 
For <math>-1<r<1</math>, let <math>S(r)</math> denote the sum of the geometric series <cmath>12+12r+12r^2+12r^3+\cdots .</cmath>  Let <math>a</math> between <math>-1</math> and <math>1</math> satisfy <math>S(a)S(-a)=2016</math>. Find <math>S(a)+S(-a)</math>.  
 
For <math>-1<r<1</math>, let <math>S(r)</math> denote the sum of the geometric series <cmath>12+12r+12r^2+12r^3+\cdots .</cmath>  Let <math>a</math> between <math>-1</math> and <math>1</math> satisfy <math>S(a)S(-a)=2016</math>. Find <math>S(a)+S(-a)</math>.  
==Solution 2==
+
==Solution==
The sum of an infinite geometric series is <math>\frac{a}{1-r}\rightarrow \frac{12}{1\mp a}</math>. The product <math>S(a)S(-a)=\frac{144}{1-a^2}=2016</math> so dividing by <math>144</math> gives <math>\frac{1}{1-a^2}=14\implies a= \pm \sqrt{\frac{13}{14}}</math>. <math>\frac{12}{1-a}+\frac{12}{1+a}=\frac{24}{1-a^2}</math>, so the answer is <math>14\cdot 24=\boxed{336}</math>.
+
The sum of an infinite geometric series is <math>\frac{a}{1-r}\rightarrow \frac{12}{1\mp a}</math>. The product <math>S(a)S(-a)=\frac{144}{1-a^2}=2016</math>. <math>\frac{12}{1-a}+\frac{12}{1+a}=\frac{24}{1-a^2}</math>, so the answer is <math>\frac{2016}{6}=\boxed{336}</math>.
 +
 
 +
== Video Solution by OmegaLearn ==
 +
https://youtu.be/3wNLfRyRrMo?t=153
 +
 
 +
~ pi_is_3.14
  
 
== See also ==
 
== See also ==
 
{{AIME box|year=2016|n=I|before=First Problem|num-a=2}}
 
{{AIME box|year=2016|n=I|before=First Problem|num-a=2}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 06:53, 4 November 2022

Problem 1

For $-1<r<1$, let $S(r)$ denote the sum of the geometric series \[12+12r+12r^2+12r^3+\cdots .\] Let $a$ between $-1$ and $1$ satisfy $S(a)S(-a)=2016$. Find $S(a)+S(-a)$.

Solution

The sum of an infinite geometric series is $\frac{a}{1-r}\rightarrow \frac{12}{1\mp a}$. The product $S(a)S(-a)=\frac{144}{1-a^2}=2016$. $\frac{12}{1-a}+\frac{12}{1+a}=\frac{24}{1-a^2}$, so the answer is $\frac{2016}{6}=\boxed{336}$.

Video Solution by OmegaLearn

https://youtu.be/3wNLfRyRrMo?t=153

~ pi_is_3.14

See also

2016 AIME I (ProblemsAnswer KeyResources)
Preceded by
First Problem
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png