Difference between revisions of "1966 AHSME Problems/Problem 37"

(Solution 2)
m (deleted redundant statement of answer)
 
(2 intermediate revisions by 2 users not shown)
Line 5: Line 5:
  
 
== Solution ==
 
== Solution ==
<math>\fbox{C}</math>
 
 
== Solution 2 ==
 
  
 
Let <math>A</math>,<math>B</math>,<math>C</math> denote the number of hours needed by Alpha, Beta, Gamma, respectively. We also have their respective efficiency <math>\frac{1}{A}</math>, <math>\frac{1}{B}</math>, and <math>\frac{1}{C}</math>. Thus we get the equations
 
Let <math>A</math>,<math>B</math>,<math>C</math> denote the number of hours needed by Alpha, Beta, Gamma, respectively. We also have their respective efficiency <math>\frac{1}{A}</math>, <math>\frac{1}{B}</math>, and <math>\frac{1}{C}</math>. Thus we get the equations
Line 19: Line 16:
 
Solving the quadratic gets <math>A=3</math> or <math>\frac{20}{3}</math>. Since <math>B=A-5>0</math>, <math>A=\frac{20}{3}</math> is the only legit solution.
 
Solving the quadratic gets <math>A=3</math> or <math>\frac{20}{3}</math>. Since <math>B=A-5>0</math>, <math>A=\frac{20}{3}</math> is the only legit solution.
  
Thus <math>B=\frac{5}{2}</math> and <math>h=\frac{1}{\frac{1}{A}+\frac{1}{B}}=\frac{4}{3}</math>, <math>\boxed{C}</math>.
+
Thus <math>B=\frac{5}{3}</math> and <math>h=\frac{1}{\frac{1}{A}+\frac{1}{B}}=\frac{4}{3}</math>, <math>\fbox{\textbf{(C)}}</math>.
  
 
~ Nafer
 
~ Nafer
  
 
== See also ==
 
== See also ==
{{AHSME box|year=1966|num-b=36|num-a=38}}   
+
{{AHSME 40p box|year=1966|num-b=36|num-a=38}}   
  
 
[[Category:Intermediate Algebra Problems]]
 
[[Category:Intermediate Algebra Problems]]
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 10:39, 29 July 2024

Problem

Three men, Alpha, Beta, and Gamma, working together, do a job in 6 hours less time than Alpha alone, in 1 hour less time than Beta alone, and in one-half the time needed by Gamma when working alone. Let $h$ be the number of hours needed by Alpha and Beta, working together, to do the job. Then $h$ equals:

$\text{(A) } \frac{5}{2} \quad \text{(B) } \frac{3}{2} \quad \text{(C) } \frac{4}{3} \quad \text{(D) } \frac{5}{4} \quad \text{(E) } \frac{3}{4}$

Solution

Let $A$,$B$,$C$ denote the number of hours needed by Alpha, Beta, Gamma, respectively. We also have their respective efficiency $\frac{1}{A}$, $\frac{1}{B}$, and $\frac{1}{C}$. Thus we get the equations \[\frac{1}{A}+\frac{1}{B}+\frac{1}{C}=\frac{1}{A-6}\] \[\frac{1}{A}+\frac{1}{B}+\frac{1}{C}=\frac{1}{B-1}\] \[\frac{1}{A}+\frac{1}{B}+\frac{1}{C}=\frac{2}{C}\Longrightarrow \frac{1}{A}+\frac{1}{B}=\frac{1}{C}\] Equating the first $2$ equations gets \[\frac{1}{A-6}=\frac{1}{B-1}\Longrightarrow A=B+5\] Substituting the new relation along with the third equation into the first equation gets \[\frac{2}{A}+\frac{2}{A-5}=\frac{1}{A-6}\] Solving the quadratic gets $A=3$ or $\frac{20}{3}$. Since $B=A-5>0$, $A=\frac{20}{3}$ is the only legit solution.

Thus $B=\frac{5}{3}$ and $h=\frac{1}{\frac{1}{A}+\frac{1}{B}}=\frac{4}{3}$, $\fbox{\textbf{(C)}}$.

~ Nafer

See also

1966 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 36
Followed by
Problem 38
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png