Difference between revisions of "2012 AMC 10B Problems/Problem 6"

(fixed latex)
m (Problem)
 
(9 intermediate revisions by 2 users not shown)
Line 3: Line 3:
 
In order to estimate the value of <math>x-y</math> where <math>x</math> and <math>y</math> are real numbers with <math>x > y > 0</math>, Xiaoli rounded <math>x</math> up by a small amount, rounded <math>y</math> down by the same amount, and then subtracted her rounded values. Which of the following statements is necessarily correct?  
 
In order to estimate the value of <math>x-y</math> where <math>x</math> and <math>y</math> are real numbers with <math>x > y > 0</math>, Xiaoli rounded <math>x</math> up by a small amount, rounded <math>y</math> down by the same amount, and then subtracted her rounded values. Which of the following statements is necessarily correct?  
  
<math>\textbf{(A)}\ \text{Her estimate is larger than} x-y \qquad \textbf{(B)}\ \text{Her estimate is smaller than} x-y \qquad \textbf{(C)}\text{Her estimate equals} x-y \qquad \textbf{(D)}\ \text{Her estimate equals} x-y \qquad \textbf{(E)}\ \text{Her estimate is} 0</math>
+
 
 +
<math>\textbf{(A) } \text{Her estimate is larger than } x-y \qquad \textbf{(B) } \text{Her estimate is smaller than } x-y \qquad \textbf{(C) } \text{Her estimate equals } x-y \\ \qquad \textbf{(D) } \text{Her estimate equals } y-x \qquad \textbf{(E) } \text{Her estimate is } 0</math>
  
 
== Solution ==
 
== Solution ==
Line 13: Line 14:
 
<math>\left(x+z\right) - \left(y-z\right) = x+z-y+z = x-y+2z</math>
 
<math>\left(x+z\right) - \left(y-z\right) = x+z-y+z = x-y+2z</math>
  
We can see that <math>x-y+2z</math> is greater than <math>x-y</math>, and the answer is <math>\textbf{(A)} \text{Her estimate is larger than} x-y</math>
+
We can see that <math>x-y+2z</math> is greater than <math>x-y</math>, and so the answer is <math>\boxed{\textbf{(A) } \text{Her estimate is larger than } x-y}</math>.
  
  

Latest revision as of 13:47, 9 August 2024

Problem

In order to estimate the value of $x-y$ where $x$ and $y$ are real numbers with $x > y > 0$, Xiaoli rounded $x$ up by a small amount, rounded $y$ down by the same amount, and then subtracted her rounded values. Which of the following statements is necessarily correct?


$\textbf{(A) } \text{Her estimate is larger than } x-y \qquad \textbf{(B) } \text{Her estimate is smaller than } x-y \qquad \textbf{(C) } \text{Her estimate equals } x-y \\ \qquad \textbf{(D) } \text{Her estimate equals } y-x \qquad \textbf{(E) } \text{Her estimate is } 0$

Solution

Let's define $z$ as the amount rounded up by and down by.

The problem statement tells us that Xiaoli performed the following computation:

$\left(x+z\right) - \left(y-z\right) = x+z-y+z = x-y+2z$

We can see that $x-y+2z$ is greater than $x-y$, and so the answer is $\boxed{\textbf{(A) } \text{Her estimate is larger than } x-y}$.


See Also

2012 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png