Difference between revisions of "2006 Seniors Pancyprian/2nd grade/Problem 3"

(new)
 
(Problem)
 
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
i)Convert <math>\Alpha=sin(x-y)+sin(y-z)+sin(z-x)</math> into product.
+
i)Convert <math>\alpha=\sin(x-y)+\sin(y-z)+\sin(z-x)</math> into product.
  
ii)Prove that: If in a triangle <math>\Alpha\Beta\Gamma</math> is true that <math>\alpha sin \Beta + \beta sin \Gamma + \gamma sin \Alpha= \frac {\alpha+\beta+\gamma}{2}</math>, then the triangle is isosceles.
+
ii)Prove that: If in a triangle <math>\alpha\beta\gamma</math> is true that <math>\alpha \sin \beta + \beta \sin \gamma + \gamma \sin \alpha= \frac{\alpha+\beta+\gamma}{2}</math>, then the triangle is isosceles.
  
 
== Solution ==
 
== Solution ==

Latest revision as of 00:24, 13 March 2020

Problem

i)Convert $\alpha=\sin(x-y)+\sin(y-z)+\sin(z-x)$ into product.

ii)Prove that: If in a triangle $\alpha\beta\gamma$ is true that $\alpha \sin \beta + \beta \sin \gamma + \gamma \sin \alpha= \frac{\alpha+\beta+\gamma}{2}$, then the triangle is isosceles.

Solution


See also