Difference between revisions of "2016 AMC 8 Problems/Problem 23"

m (small change)
(Video Solution)
 
(31 intermediate revisions by 17 users not shown)
Line 1: Line 1:
==Problem 23==
+
==Problem==
 +
 
 
Two congruent circles centered at points <math>A</math> and <math>B</math> each pass through the other circle's center. The line containing both <math>A</math> and <math>B</math> is extended to intersect the circles at points <math>C</math> and <math>D</math>. The circles intersect at two points, one of which is <math>E</math>. What is the degree measure of <math>\angle CED</math>?
 
Two congruent circles centered at points <math>A</math> and <math>B</math> each pass through the other circle's center. The line containing both <math>A</math> and <math>B</math> is extended to intersect the circles at points <math>C</math> and <math>D</math>. The circles intersect at two points, one of which is <math>E</math>. What is the degree measure of <math>\angle CED</math>?
  
 
<math>\textbf{(A) }90\qquad\textbf{(B) }105\qquad\textbf{(C) }120\qquad\textbf{(D) }135\qquad \textbf{(E) }150</math>
 
<math>\textbf{(A) }90\qquad\textbf{(B) }105\qquad\textbf{(C) }120\qquad\textbf{(D) }135\qquad \textbf{(E) }150</math>
  
==Solution 1==
+
==Solutions==
 +
===Solution 1===
 
Observe that <math>\triangle{EAB}</math> is equilateral. Therefore, <math>m\angle{AEB}=m\angle{EAB}=m\angle{EBA} = 60^{\circ}</math>. Since <math>CD</math> is a straight line, we conclude that <math>m\angle{EBD} = 180^{\circ}-60^{\circ}=120^{\circ}</math>. Since <math>BE=BD</math> (both are radii of the same circle), <math>\triangle{BED}</math> is isosceles, meaning that <math>m\angle{BED}=m\angle{BDE}=30^{\circ}</math>. Similarly, <math>m\angle{AEC}=m\angle{ACE}=30^{\circ}</math>.  
 
Observe that <math>\triangle{EAB}</math> is equilateral. Therefore, <math>m\angle{AEB}=m\angle{EAB}=m\angle{EBA} = 60^{\circ}</math>. Since <math>CD</math> is a straight line, we conclude that <math>m\angle{EBD} = 180^{\circ}-60^{\circ}=120^{\circ}</math>. Since <math>BE=BD</math> (both are radii of the same circle), <math>\triangle{BED}</math> is isosceles, meaning that <math>m\angle{BED}=m\angle{BDE}=30^{\circ}</math>. Similarly, <math>m\angle{AEC}=m\angle{ACE}=30^{\circ}</math>.  
  
 
Now, <math>\angle{CED}=m\angle{AEC}+m\angle{AEB}+m\angle{BED} = 30^{\circ}+60^{\circ}+30^{\circ} = 120^{\circ}</math>. Therefore, the answer is <math>\boxed{\textbf{(C) }\ 120}</math>.
 
Now, <math>\angle{CED}=m\angle{AEC}+m\angle{AEB}+m\angle{BED} = 30^{\circ}+60^{\circ}+30^{\circ} = 120^{\circ}</math>. Therefore, the answer is <math>\boxed{\textbf{(C) }\ 120}</math>.
  
==Solution 2 (Trig)==
+
==Video Solution==
Let <math>r</math> be the radius of both circles (we are given that they are congruent). Let's drop the altitude from <math>E</math> onto segment <math>AB</math> and call the intersection point <math>F</math>. Notice that <math>F</math> is the midpoint of <math>A</math> and <math>B</math>, which means that <math>AF = BF = \frac{r}{2}</math>. Also notice that <math>\triangle{EAB}</math> is equilateral, which means we can use the Pythagorean Theorem to get <math>EF = \frac{r\sqrt{3}}{2}</math>.
+
https://youtu.be/iGG_Hz-V6lU
  
Now let's apply trigonometry. Let <math>\theta = \angle{CEF}</math>. We can see that <math>\tan\theta = \frac{CF}{EF} = \frac{\frac{3r}{2}}{\frac{r\sqrt{3}}{2}} = \sqrt{3}</math>. This means <math>m\angle{CEF} = \frac{\pi}{3}</math>. However, this is not the answer. The question is asking for <math>m\angle{CED}</math>. Notice that <math>\angle{CEF}\cong\angle{DEF}</math>, which means <math>m\angle{CED} = 2m\angle{CEF}</math>. Thus, <math>\angle{CED} = 2\cdot\frac{\pi}{3} = \frac{2\pi}{3} = 120^{\circ}</math>. Therefore, the answer is <math>\boxed{\textbf{(C) }\ 120}</math>.
+
~Education, the Study of Everything
 +
 
 +
== Video Solution by OmegaLearn ==
 +
https://youtu.be/FDgcLW4frg8?t=968
 +
 
 +
~ pi_is_3.14
  
 
==Video Solution==
 
==Video Solution==
https://youtu.be/WJ0Hodj0h2o - Happytwin
+
https://youtu.be/nLlnMO6D5ek
 +
 
 +
~savannahsolver
  
 
==See Also==
 
==See Also==
 
{{AMC8 box|year=2016|num-b=22|num-a=24}}
 
{{AMC8 box|year=2016|num-b=22|num-a=24}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 09:29, 24 July 2024

Problem

Two congruent circles centered at points $A$ and $B$ each pass through the other circle's center. The line containing both $A$ and $B$ is extended to intersect the circles at points $C$ and $D$. The circles intersect at two points, one of which is $E$. What is the degree measure of $\angle CED$?

$\textbf{(A) }90\qquad\textbf{(B) }105\qquad\textbf{(C) }120\qquad\textbf{(D) }135\qquad \textbf{(E) }150$

Solutions

Solution 1

Observe that $\triangle{EAB}$ is equilateral. Therefore, $m\angle{AEB}=m\angle{EAB}=m\angle{EBA} = 60^{\circ}$. Since $CD$ is a straight line, we conclude that $m\angle{EBD} = 180^{\circ}-60^{\circ}=120^{\circ}$. Since $BE=BD$ (both are radii of the same circle), $\triangle{BED}$ is isosceles, meaning that $m\angle{BED}=m\angle{BDE}=30^{\circ}$. Similarly, $m\angle{AEC}=m\angle{ACE}=30^{\circ}$.

Now, $\angle{CED}=m\angle{AEC}+m\angle{AEB}+m\angle{BED} = 30^{\circ}+60^{\circ}+30^{\circ} = 120^{\circ}$. Therefore, the answer is $\boxed{\textbf{(C) }\ 120}$.

Video Solution

https://youtu.be/iGG_Hz-V6lU

~Education, the Study of Everything

Video Solution by OmegaLearn

https://youtu.be/FDgcLW4frg8?t=968

~ pi_is_3.14

Video Solution

https://youtu.be/nLlnMO6D5ek

~savannahsolver

See Also

2016 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 22
Followed by
Problem 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png