Difference between revisions of "2005 IMO Problems/Problem 3"
(Created page with "Let <math>x, y, z > 0</math> satisfy <math>xyz\ge 1</math>. Prove that <cmath>\frac{x^5-x^2}{x^5+y^2+z^2} + \frac{y^5-y^2}{x^2+y^5+z^2} + \frac{z^5-z^2}{x^2+y^2+z^5} \ge 0.</c...") |
|||
Line 1: | Line 1: | ||
+ | ==Problem== | ||
+ | |||
Let <math>x, y, z > 0</math> satisfy <math>xyz\ge 1</math>. Prove that <cmath>\frac{x^5-x^2}{x^5+y^2+z^2} + \frac{y^5-y^2}{x^2+y^5+z^2} + \frac{z^5-z^2}{x^2+y^2+z^5} \ge 0.</cmath> | Let <math>x, y, z > 0</math> satisfy <math>xyz\ge 1</math>. Prove that <cmath>\frac{x^5-x^2}{x^5+y^2+z^2} + \frac{y^5-y^2}{x^2+y^5+z^2} + \frac{z^5-z^2}{x^2+y^2+z^5} \ge 0.</cmath> | ||
+ | |||
+ | ==Solution== | ||
+ | {{solution}} | ||
+ | |||
+ | ==See Also== | ||
+ | |||
+ | {{IMO box|year=2005|num-b=2|num-a=4}} |