Difference between revisions of "2015 AMC 10B Problems/Problem 21"
Mathlover66 (talk | contribs) m (→Solution 1) |
Mathboy282 (talk | contribs) (→Solution 1) |
||
(8 intermediate revisions by 6 users not shown) | |||
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
− | Cozy the Cat and Dash the Dog are going up a staircase with a certain number of steps. However, instead of walking up the steps one at a time, both Cozy and Dash jump. Cozy goes two steps up with each jump (though if necessary, he will just jump the last step). Dash goes five steps up with each jump (though if necessary, he will just jump the last steps if there are fewer than <math>5</math> steps left). Suppose | + | Cozy the Cat and Dash the Dog are going up a staircase with a certain number of steps. However, instead of walking up the steps one at a time, both Cozy and Dash jump. Cozy goes two steps up with each jump (though if necessary, he will just jump the last step). Dash goes five steps up with each jump (though if necessary, he will just jump the last steps if there are fewer than <math>5</math> steps left). Suppose Dash takes <math>19</math> fewer jumps than Cozy to reach the top of the staircase. Let <math>s</math> denote the sum of all possible numbers of steps this staircase can have. What is the sum of the digits of <math>s</math>? |
<math>\textbf{(A) }9\qquad\textbf{(B) }11\qquad\textbf{(C) }12\qquad\textbf{(D) }13\qquad\textbf{(E) }15</math> | <math>\textbf{(A) }9\qquad\textbf{(B) }11\qquad\textbf{(C) }12\qquad\textbf{(D) }13\qquad\textbf{(E) }15</math> | ||
Line 6: | Line 6: | ||
==Solution 1== | ==Solution 1== | ||
− | We | + | Let <math>n</math> be the number of steps. We have |
− | <cmath>\left\lceil \frac{ | + | <cmath>\left\lceil \frac{n}{2} \right\rceil - 19 = \left\lceil \frac{n}{5} \right\rceil</cmath> |
We will proceed to solve this equation via casework. | We will proceed to solve this equation via casework. | ||
− | Case <math>1</math> | + | Case <math>1</math>: <math>\left\lceil \frac{n}{2} \right\rceil = \frac{n}{2}</math> |
− | Our equation becomes <math>\frac{ | + | Our equation becomes <math>\frac{n}{2} - 19 = \frac{n}{5} + \frac{j}{5}</math>, where <math>j \in \{0,1,2,3,4\}</math> Using the fact that <math>n</math> is an integer, we quickly find that <math>j=1</math> and <math>j=4</math> yield <math>n=64</math> and <math>n=66</math>, respectively. |
<br> | <br> | ||
− | Case <math>2</math> | + | Case <math>2</math>: <math>\left\lceil \frac{n}{2} \right\rceil = \frac{n}{2}+\frac{1}{2}</math> |
− | Our equation becomes <math>\frac{ | + | Our equation becomes <math>\frac{n}{2} +\frac{1}{2} - 19 = \frac{n}{5} + \frac{j}{5}</math>, where <math>j \in \{0,1,2,3,4\}</math> Using the fact that <math>n</math> is an integer, we quickly find that <math>j=2</math> yields <math>n=63</math>. Summing up we get <math>63+64+66=193</math>. The sum of the digits is <math>\boxed{\textbf{(D)}\; 13}</math>. |
+ | |||
+ | ===Supplement=== | ||
+ | We find the values of <math>j</math> by the following. | ||
+ | |||
+ | Case 1: | ||
+ | |||
+ | Multiplying both sides by <math>10</math> gives us <math>5n-190=2n+2j \Rightarrow 3n=2j+190 \Rightarrow n=\frac{2j+190}{3}.</math> | ||
+ | |||
+ | However, also note that <math>n</math> must be an integer (you can't have half a step), so we must have <math>2j+190\equiv 0 \pmod 3 \Rightarrow 2j+1 \equiv 0 \pmod 3 \Rightarrow 2j \equiv 2 \pmod 3.</math> | ||
+ | |||
+ | Values <math>j</math> that satisfy this within the domain <math>j\in {0,1,2,3,4}</math> are only <math>j=1</math> and <math>j=4,</math> corresponding to values of <math>n=64</math> and <math>66.</math> | ||
+ | |||
+ | Case 2: | ||
+ | |||
+ | Multiplying both sides by <math>10</math> gives us <math>5n-185=2n+2j \Rightarrow 3n = 2j + 185 \Rightarrow n=\frac{2j+185}{3}.</math> | ||
+ | |||
+ | Hence we must have <math>2j+185 \equiv 0 \pmod 3 \Rightarrow 2j \equiv 1 \pmod 3.</math> | ||
+ | |||
+ | Value <math>j</math> that satisfy this within the domain <math>j\in {0,1,2,3,4}</math> is only <math>j=2</math> which corresponds to <math>n=63.</math> Hence follows. | ||
+ | |||
+ | ~mathboy282 | ||
==Solution 2== | ==Solution 2== | ||
− | We know from the problem that Dash goes <math>3</math> steps further than Cozy per jump (assuming they aren't within <math>4</math> steps from the top). That means that if Dash takes <math>19</math> fewer jumps than Cozy to get to the top of the staircase, the staircase must be at least <math>57</math> steps high | + | We know from the problem that Dash goes <math>3</math> steps further than Cozy per jump (assuming they aren't within <math>4</math> steps from the top). That means that if Dash takes <math>19</math> fewer jumps than Cozy to get to the top of the staircase, the staircase must be at least <math>3 \cdot 19=57</math> steps high. We then start using guess-and-check: |
<math>57</math> steps: <math>\left \lceil {57/2} \right \rceil = 29</math> jumps for Cozy, and <math>\left \lceil {57/5} \right \rceil = 12</math> jumps for Dash, giving a difference of <math>17</math> jumps. | <math>57</math> steps: <math>\left \lceil {57/2} \right \rceil = 29</math> jumps for Cozy, and <math>\left \lceil {57/5} \right \rceil = 12</math> jumps for Dash, giving a difference of <math>17</math> jumps. | ||
− | <math>58</math> steps: <math>\left \lceil {58/2} \right \rceil = 29</math> jumps for Cozy, and <math>\left \lceil { | + | <math>58</math> steps: <math>\left \lceil {58/2} \right \rceil = 29</math> jumps for Cozy, and <math>\left \lceil {58/5} \right \rceil = 12</math> jumps for Dash, giving a difference of <math>17</math> jumps. |
<math>59</math> steps: <math>\left \lceil {59/2} \right \rceil = 30</math> jumps for Cozy, and <math>\left \lceil {59/5} \right \rceil = 12</math> jumps for Dash, giving a difference of <math>18</math> jumps. | <math>59</math> steps: <math>\left \lceil {59/2} \right \rceil = 30</math> jumps for Cozy, and <math>\left \lceil {59/5} \right \rceil = 12</math> jumps for Dash, giving a difference of <math>18</math> jumps. | ||
+ | |||
+ | <math>60</math> steps: <math>\left \lceil {60/2} \right \rceil = 30</math> jumps for Cozy, and <math>\left \lceil {60/5} \right \rceil = 12</math> jumps for Dash, giving a difference of <math>18</math> jumps. | ||
<math>\vdots</math> | <math>\vdots</math> | ||
Line 37: | Line 60: | ||
Therefore, the possible numbers of steps in the staircase are <math>63</math>, <math>64</math>, and <math>66</math>, giving a sum of <math>193</math>. The sum of those digits is <math>13</math>, so the answer is <math>\boxed{D}</math> | Therefore, the possible numbers of steps in the staircase are <math>63</math>, <math>64</math>, and <math>66</math>, giving a sum of <math>193</math>. The sum of those digits is <math>13</math>, so the answer is <math>\boxed{D}</math> | ||
+ | |||
+ | *Minor Edits by Lolgod2 | ||
==Solution 3== | ==Solution 3== | ||
Line 46: | Line 71: | ||
<math>19 - 3a = \left \lceil{\frac{b}{2}}\right \rceil - \left \lceil{\frac{b}{5}}\right \rceil</math>. | <math>19 - 3a = \left \lceil{\frac{b}{2}}\right \rceil - \left \lceil{\frac{b}{5}}\right \rceil</math>. | ||
− | Obviously, since <math>b \le 10</math>, this will not work for any value under <math>6</math>. In addition, since obviously <math>\frac{b}{2} \ge \frac{b}{5}</math>, this will not work for any value over six, so we have <math>a = 6</math> and <math>\left \lceil{\frac{b}{2}}\right \rceil - \left \lceil{\frac{b}{5}}\right \rceil = 1.</math> | + | Obviously, since <math>b \le 10</math>, this will not work for any value of <math>a</math> under <math>6</math>. In addition, since obviously <math>\frac{b}{2} \ge \frac{b}{5}</math>, this will not work for any value over six, so we have <math>a = 6</math> and <math>\left \lceil{\frac{b}{2}}\right \rceil - \left \lceil{\frac{b}{5}}\right \rceil = 1.</math> |
This can be achieved when <math>\left \lceil{\frac{b}{5}}\right \rceil = 1</math> and <math>\left \lceil{\frac{b}{2}}\right \rceil = 2</math>, or when <math>\left \lceil{\frac{b}{5}}\right \rceil = 2</math> and <math>\left \lceil{\frac{b}{2}}\right \rceil = 3</math>. | This can be achieved when <math>\left \lceil{\frac{b}{5}}\right \rceil = 1</math> and <math>\left \lceil{\frac{b}{2}}\right \rceil = 2</math>, or when <math>\left \lceil{\frac{b}{5}}\right \rceil = 2</math> and <math>\left \lceil{\frac{b}{2}}\right \rceil = 3</math>. | ||
Line 81: | Line 106: | ||
==Video Solution== | ==Video Solution== | ||
https://youtu.be/TpHZVbBGmVQ | https://youtu.be/TpHZVbBGmVQ | ||
− | |||
− | |||
==See Also== | ==See Also== | ||
{{AMC10 box|year=2015|ab=B|num-b=20|num-a=22}} | {{AMC10 box|year=2015|ab=B|num-b=20|num-a=22}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Latest revision as of 19:32, 20 October 2024
Contents
Problem
Cozy the Cat and Dash the Dog are going up a staircase with a certain number of steps. However, instead of walking up the steps one at a time, both Cozy and Dash jump. Cozy goes two steps up with each jump (though if necessary, he will just jump the last step). Dash goes five steps up with each jump (though if necessary, he will just jump the last steps if there are fewer than steps left). Suppose Dash takes fewer jumps than Cozy to reach the top of the staircase. Let denote the sum of all possible numbers of steps this staircase can have. What is the sum of the digits of ?
Solution 1
Let be the number of steps. We have
We will proceed to solve this equation via casework.
Case :
Our equation becomes , where Using the fact that is an integer, we quickly find that and yield and , respectively.
Case :
Our equation becomes , where Using the fact that is an integer, we quickly find that yields . Summing up we get . The sum of the digits is .
Supplement
We find the values of by the following.
Case 1:
Multiplying both sides by gives us
However, also note that must be an integer (you can't have half a step), so we must have
Values that satisfy this within the domain are only and corresponding to values of and
Case 2:
Multiplying both sides by gives us
Hence we must have
Value that satisfy this within the domain is only which corresponds to Hence follows.
~mathboy282
Solution 2
We know from the problem that Dash goes steps further than Cozy per jump (assuming they aren't within steps from the top). That means that if Dash takes fewer jumps than Cozy to get to the top of the staircase, the staircase must be at least steps high. We then start using guess-and-check:
steps: jumps for Cozy, and jumps for Dash, giving a difference of jumps.
steps: jumps for Cozy, and jumps for Dash, giving a difference of jumps.
steps: jumps for Cozy, and jumps for Dash, giving a difference of jumps.
steps: jumps for Cozy, and jumps for Dash, giving a difference of jumps.
By the time we test steps, we notice that when the number of steps exceeds a multiple of , the difference in jumps increases. So, we have to find the next number that will increase the difference. doesn't because both both Cozy's and Dash's number of jumps increases, but does, and . actually gives a difference of jumps, but goes back down to (because Dash had to take another jump when Cozy didn't). We don't need to go any further because the difference will stay above onward.
Therefore, the possible numbers of steps in the staircase are , , and , giving a sum of . The sum of those digits is , so the answer is
- Minor Edits by Lolgod2
Solution 3
We're looking for natural numbers such that .
Let's call . We now have , or
.
Obviously, since , this will not work for any value of under . In addition, since obviously , this will not work for any value over six, so we have and
This can be achieved when and , or when and .
Case One:
We have and , so .
Case Two:
We have and , so .
We then have , which has a digit sum of .
Solution 4
Translate the problem into following equation:
Since , we have
i.e.,
We then have when or (the dog's last jump has steps and the cat's last jump has step), which yields and respectively.
Another solution is when , which yields .
Therefore, with , the digit sum is .
Video Solution
See Also
2015 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 20 |
Followed by Problem 22 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.