Difference between revisions of "2020 IMO Problems/Problem 2"
m (→Solution) |
(→Solution) |
||
(10 intermediate revisions by 6 users not shown) | |||
Line 1: | Line 1: | ||
− | Problem | + | == Problem == |
− | Prove that | + | The real numbers <math>a</math>, <math>b</math>, <math>c</math>, <math>d</math> are such that <math>a \geq b \geq c \geq d > 0</math> and <math>a + b + c + d = 1</math>. Prove that<cmath>(a + 2b + 3c + 4d) a^a b^b c^c d^d < 1.</cmath> |
− | < | ||
− | |||
== Solution == | == Solution == | ||
Line 8: | Line 6: | ||
Using Weighted AM-GM we get | Using Weighted AM-GM we get | ||
− | <cmath>\frac{a | + | <cmath>\frac{a\cdot a +b\cdot b +c\cdot c +d\cdot d}{a+b+c+d} \ge \sqrt[a+b+c+d]{a^a b^b c^c d^d}</cmath> |
<cmath>\implies a^a b^b c^c d^d \le a^2 +b^2 +c^2 +d^2</cmath> | <cmath>\implies a^a b^b c^c d^d \le a^2 +b^2 +c^2 +d^2</cmath> | ||
− | So, <cmath>(a+2b+3c+4d) a^ab^bc^ | + | So, <cmath>(a+2b+3c+4d) a^ab^bc^cd^d \le (a+2b+3c+4d)(a^2+b^2+c^2+d^2) </cmath> |
Now notice that | Now notice that | ||
− | <cmath>a+2b+3c+4d \text{ will be less then the following | + | <cmath>a+2b+3c+4d \text{ will be less then the following expressions (and the reason is written to the right)} </cmath> |
− | <cmath>a+ | + | <cmath>a+3b+3c+3d,\text{as } d\le b</cmath> |
<cmath>3a+3b+3c+d, \text{as } d\le a</cmath> | <cmath>3a+3b+3c+d, \text{as } d\le a</cmath> | ||
<cmath>3a+b+3c+3d, \text{as } b+d\le 2a </cmath> | <cmath>3a+b+3c+3d, \text{as } b+d\le 2a </cmath> | ||
Line 23: | Line 21: | ||
So, we get | So, we get | ||
− | <cmath>(a+2b+3c+4d)(a^2+b^2+c^2+d^2) | + | <cmath>\begin{split}&~~~~(a+2b+3c+4d)(a^2+b^2+c^2+d^2) \\ |
− | + | &= a^2(a+2b+3c+4d)+b^2(a+2b+3c+4d)+c^2 (a+2b+3c+4d) +d^2 (a+2b+3c+4d)\\ | |
+ | &\le a^2(a+3b+3c+3d)+b^2(3a+b+3c+3d)+c^2 (3a+3b+c+3d) +d^2 (3a+3b+3c+d)\\ | ||
+ | &<(a+b+c+d)^3 \\&=1\end{split}</cmath> | ||
+ | |||
+ | Now, for equality we must have <math>a=b=c=d=\frac{1}{4}</math> | ||
+ | |||
+ | In that case we get <cmath>(a+2b+3c+4d) a^ab^bc^cd^d \le (a+2b+3c+4d)(a^2+b^2+c^2+d^2) =\frac{5}{8} <1</cmath> | ||
− | |||
− | + | ~Shen Kislay kai | |
− | + | == Video solution == | |
+ | |||
+ | https://youtu.be/bDHtM1wijbY [Video covers all day 1 problems] | ||
− | + | ==See Also== | |
+ | {{IMO box|year=2020|num-b=1|num-a=3}} | ||
− | + | [[Category:Olympiad Algebra Problems]] |
Latest revision as of 12:14, 3 September 2024
Contents
Problem
The real numbers , , , are such that and . Prove that
Solution
Using Weighted AM-GM we get
So,
Now notice that
So, we get
Now, for equality we must have
In that case we get
~Shen Kislay kai
Video solution
https://youtu.be/bDHtM1wijbY [Video covers all day 1 problems]
See Also
2020 IMO (Problems) • Resources | ||
Preceded by Problem 1 |
1 • 2 • 3 • 4 • 5 • 6 | Followed by Problem 3 |
All IMO Problems and Solutions |