Difference between revisions of "2021 USAJMO Problems/Problem 6"
m (→Solution) |
m |
||
(One intermediate revision by one other user not shown) | |||
Line 2: | Line 2: | ||
Let <math>n \geq 4</math> be an integer. Find all positive real solutions to the following system of <math>2n</math> equations:<cmath>\begin{align*} a_{1} &=\frac{1}{a_{2 n}}+\frac{1}{a_{2}}, & a_{2}&=a_{1}+a_{3}, \\ a_{3}&=\frac{1}{a_{2}}+\frac{1}{a_{4}}, & a_{4}&=a_{3}+a_{5}, \\ a_{5}&=\frac{1}{a_{4}}+\frac{1}{a_{6}}, & a_{6}&=a_{5}+a_{7}, \\ &\vdots \\ a_{2 n-1}&=\frac{1}{a_{2 n-2}}+\frac{1}{a_{2 n}}, & a_{2 n}&=a_{2 n-1}+a_{1} \end{align*}</cmath> | Let <math>n \geq 4</math> be an integer. Find all positive real solutions to the following system of <math>2n</math> equations:<cmath>\begin{align*} a_{1} &=\frac{1}{a_{2 n}}+\frac{1}{a_{2}}, & a_{2}&=a_{1}+a_{3}, \\ a_{3}&=\frac{1}{a_{2}}+\frac{1}{a_{4}}, & a_{4}&=a_{3}+a_{5}, \\ a_{5}&=\frac{1}{a_{4}}+\frac{1}{a_{6}}, & a_{6}&=a_{5}+a_{7}, \\ &\vdots \\ a_{2 n-1}&=\frac{1}{a_{2 n-2}}+\frac{1}{a_{2 n}}, & a_{2 n}&=a_{2 n-1}+a_{1} \end{align*}</cmath> | ||
==Solution== | ==Solution== | ||
− | {{USAJMO newbox|year=2021|num-b= | + | |
+ | ==See Also== | ||
+ | {{USAJMO newbox|year=2021|num-b=5|after=Last Problem}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Latest revision as of 18:06, 6 October 2023
Problem
Let be an integer. Find all positive real solutions to the following system of equations:
Solution
See Also
2021 USAJMO (Problems • Resources) | ||
Preceded by Problem 5 |
Followed by Last Problem | |
1 • 2 • 3 • 4 • 5 • 6 | ||
All USAJMO Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.