Difference between revisions of "2021 AIME I Problems/Problem 11"

(Solution 4 (Cyclic Quadrilaterals, Similar Triangles, Law of Cosines, Ptolemy's Theorem))
(Solution 3 (Pythagorean Theorem))
 
(67 intermediate revisions by 5 users not shown)
Line 1: Line 1:
 
==Problem==
 
==Problem==
Let <math>ABCD</math> be a cyclic quadrilateral with <math>AB=4,BC=5,CD=6,</math> and <math>DA=7</math>. Let <math>A_1</math> and <math>C_1</math> be the feet of the perpendiculars from <math>A</math> and <math>C</math>, respectively, to line <math>BD,</math> and let <math>B_1</math> and <math>D_1</math> be the feet of the perpendiculars from <math>B</math> and <math>D,</math> respectively, to line <math>AC</math>. The perimeter of <math>A_1B_1C_1D_1</math> is <math>\frac mn</math>, where <math>m</math> and <math>n</math> are relatively prime positive integers. Find <math>m+n</math>.
+
Let <math>ABCD</math> be a cyclic quadrilateral with <math>AB=4,BC=5,CD=6,</math> and <math>DA=7.</math> Let <math>A_1</math> and <math>C_1</math> be the feet of the perpendiculars from <math>A</math> and <math>C,</math> respectively, to line <math>BD,</math> and let <math>B_1</math> and <math>D_1</math> be the feet of the perpendiculars from <math>B</math> and <math>D,</math> respectively, to line <math>AC.</math> The perimeter of <math>A_1B_1C_1D_1</math> is <math>\frac mn,</math> where <math>m</math> and <math>n</math> are relatively prime positive integers. Find <math>m+n.</math>
  
 
==Diagram==
 
==Diagram==
[[File:2021 AIME I Problem 11 Diagram.png|center]]
+
<asy>
 +
/* Made by MRENTHUSIASM */
 +
size(300);
  
~MRENTHUSIASM (by Geometry Expressions)
+
pair A, B, C, D, A1, B1, C1, D1;
 +
A = origin;
 +
C = (sqrt(53041)/31,0);
 +
B = intersectionpoints(Circle(A,4),Circle(C,5))[0];
 +
D = intersectionpoints(Circle(A,7),Circle(C,6))[1];
 +
A1 = foot(A,B,D);
 +
C1 = foot(C,B,D);
 +
B1 = foot(B,A,C);
 +
D1 = foot(D,A,C);
 +
markscalefactor=0.025;
 +
draw(rightanglemark(A,A1,B),red);
 +
draw(rightanglemark(B,B1,A),red);
 +
draw(rightanglemark(C,C1,D),red);
 +
draw(rightanglemark(D,D1,C),red);
 +
draw(A1--B1--C1--D1--cycle,green);
 +
dot("$A$",A,1.5*W,linewidth(4));
 +
dot("$B$",B,1.5*dir(180-aCos(11/59)),linewidth(4));
 +
dot("$C$",C,1.5*E,linewidth(4));
 +
dot("$D$",D,1.5*dir(-aCos(11/59)),linewidth(4));
 +
dot("$A_1$",A1,1.5*dir(A1-A),linewidth(4));
 +
dot("$B_1$",B1,1.5*S,linewidth(4));
 +
dot("$C_1$",C1,1.5*dir(C1-C),linewidth(4));
 +
dot("$D_1$",D1,1.5*N,linewidth(4));
 +
draw(A--B--C--D--cycle^^A--C^^B--D^^circumcircle(A,B,C));
 +
draw(A--A1^^B--B1^^C--C1^^D--D1,dashed);
 +
</asy>
 +
~MRENTHUSIASM
  
==Solution 1==
+
==Solution 1 (Cyclic Quadrilaterals, Similar Triangles, and Trigonometry)==
[[File:Leonard_my_dude's_image.png|center]]
+
This solution refers to the <b>Diagram</b> section.
 +
 
 +
By the <b>Converse of the Inscribed Angle Theorem</b>, if distinct points <math>X</math> and <math>Y</math> lie on the same side of <math>\overline{PQ}</math> (but not on <math>\overline{PQ}</math> itself) for which <math>\angle PXQ=\angle PYQ,</math> then <math>P,Q,X,</math> and <math>Y</math> are cyclic. From the Converse of the Inscribed Angle Theorem, quadrilaterals <math>ABA_1B_1,BCC_1B_1,CDC_1D_1,</math> and <math>DAA_1D_1</math> are all cyclic.
 +
 
 +
Suppose <math>\overline{AC}</math> and <math>\overline{BD}</math> intersect at <math>E,</math> and let <math>\angle AEB=\theta.</math> It follows that <math>\angle CED=\theta</math> and <math>\angle BEC=\angle DEA=180^\circ-\theta.</math>
 +
 
 +
We obtain the following diagram:
 +
<asy>
 +
/* Made by MRENTHUSIASM */
 +
size(300);
 +
 
 +
pair A, B, C, D, A1, B1, C1, D1, P, M1, M2;
 +
A = origin;
 +
C = (sqrt(53041)/31,0);
 +
B = intersectionpoints(Circle(A,4),Circle(C,5))[0];
 +
D = intersectionpoints(Circle(A,7),Circle(C,6))[1];
 +
A1 = foot(A,B,D);
 +
C1 = foot(C,B,D);
 +
B1 = foot(B,A,C);
 +
D1 = foot(D,A,C);
 +
P = intersectionpoint(A--C,B--D);
 +
M1 = midpoint(A--B);
 +
M2 = midpoint(C--D);
 +
markscalefactor=0.025;
 +
draw(rightanglemark(A,A1,B),red);
 +
draw(rightanglemark(B,B1,A),red);
 +
draw(rightanglemark(C,C1,D),red);
 +
draw(rightanglemark(D,D1,C),red);
 +
draw(Arc(M1,A,B)^^Arc(M2,C,D),blue);
 +
draw(A1--B1--C1--D1--cycle,green);
 +
dot("$A$",A,1.5*W,linewidth(4));
 +
dot("$B$",B,1.5*dir(180-aCos(11/59)),linewidth(4));
 +
dot("$C$",C,1.5*E,linewidth(4));
 +
dot("$D$",D,1.5*dir(-aCos(11/59)),linewidth(4));
 +
dot("$A_1$",A1,1.5*dir(A1-A),linewidth(4));
 +
dot("$B_1$",B1,1.5*S,linewidth(4));
 +
dot("$C_1$",C1,1.5*dir(C1-C),linewidth(4));
 +
dot("$D_1$",D1,1.5*N,linewidth(4));
 +
dot("$E$",P,dir((180-aCos(11/59))/2),linewidth(4));
 +
label("$\theta$",P,dir(180-aCos(11/59)/2),red);
 +
draw(A--B--C--D--cycle^^A--C^^B--D^^circumcircle(A,B,C));
 +
draw(A--A1^^B--B1^^C--C1^^D--D1,dashed);
 +
</asy>
 +
In every cyclic quadrilateral, each pair of opposite angles is supplementary. So, we have <math>\angle EA_1B_1=\angle EAB</math> (both supplementary to <math>\angle B_1A_1B</math>) and <math>\angle EB_1A_1=\angle EBA</math> (both supplementary to <math>\angle A_1B_1A</math>), from which <math>\triangle A_1B_1E \sim \triangle ABE</math> by AA, with the ratio of similitude <cmath>\frac{A_1B_1}{AB}=\underbrace{\frac{A_1E}{AE}}_{\substack{\text{right} \\ \triangle A_1AE}}=\underbrace{\frac{B_1E}{BE}}_{\substack{\text{right} \\ \triangle B_1BE}}=\cos\theta. \hspace{15mm}(1)</cmath>
 +
Similarly, we have <math>\angle EC_1D_1=\angle ECD</math> (both supplementary to <math>\angle D_1C_1D</math>) and <math>\angle ED_1C_1=\angle EDC</math> (both supplementary to <math>\angle C_1D_1C</math>), from which <math>\triangle C_1D_1E \sim \triangle CDE</math> by AA, with the ratio of similitude <cmath>\frac{C_1D_1}{CD}=\underbrace{\frac{C_1E}{CE}}_{\substack{\text{right} \\ \triangle C_1CE}}=\underbrace{\frac{D_1E}{DE}}_{\substack{\text{right} \\ \triangle D_1DE}}=\cos\theta. \hspace{14.75mm}(2)</cmath>
 +
We apply the Transitive Property to <math>(1)</math> and <math>(2):</math>
 +
<ol style="margin-left: 1.5em;">
 +
  <li>We get <math>\frac{B_1E}{BE}=\frac{C_1E}{CE}=\cos\theta,</math> so <math>\triangle B_1C_1E \sim \triangle BCE</math> by SAS, with the ratio of similitude <cmath>\frac{B_1C_1}{BC}=\frac{B_1E}{BE}=\frac{C_1E}{CE}=\cos\theta. \hspace{14.75mm}(3)</cmath></li><p>
 +
  <li>We get <math>\frac{D_1E}{DE}=\frac{A_1E}{AE}=\cos\theta,</math> so <math>\triangle D_1A_1E \sim \triangle DAE</math> by SAS, with the ratio of similitude <cmath>\frac{D_1A_1}{DA}=\frac{D_1E}{DE}=\frac{A_1E}{AE}=\cos\theta. \hspace{14mm}(4)</cmath></li><p>
 +
</ol>
 +
From <math>(1),(2),(3),</math> and <math>(4),</math> the perimeter of <math>A_1B_1C_1D_1</math> is
 +
<cmath>\begin{align*}
 +
A_1B_1+B_1C_1+C_1D_1+D_1A_1&=AB\cos\theta+BC\cos\theta+CD\cos\theta+DA\cos\theta \\
 +
&=(AB+BC+CD+DA)\cos\theta \\
 +
&=22\cos\theta. &&\hspace{5mm}(\bigstar)
 +
\end{align*}</cmath>
 +
Two solutions follow from here:
  
Let <math>O</math> be the intersection of <math>AC</math> and <math>BD</math>. Let <math>\theta = \angle AOB</math>.
+
===Solution 1.1 (Law of Cosines)===
 +
Note that <math>\cos(180^\circ-\theta)=-\cos\theta</math> holds for all <math>\theta.</math> We apply the Law of Cosines to <math>\triangle ABE, \triangle BCE, \triangle CDE,</math> and <math>\triangle DAE,</math> respectively:
 +
<cmath>\begin{alignat*}{12}
 +
&&&AE^2+BE^2-2\cdot AE\cdot BE\cdot\cos\angle AEB&&=AB^2&&\quad\implies\quad AE^2+BE^2-2\cdot AE\cdot BE\cdot\cos\theta&&=4^2, \hspace{15mm} &(1\star) \\
 +
&&&BE^2+CE^2-2\cdot BE\cdot CE\cdot\cos\angle BEC&&=BC^2&&\quad\implies\quad BE^2+CE^2+2\cdot BE\cdot CE\cdot\cos\theta&&=5^2, \hspace{15mm} &(2\star) \\
 +
&&&CE^2+DE^2-2\cdot CE\cdot DE\cdot\cos\angle CED&&=CD^2&&\quad\implies\quad CE^2+DE^2-2\cdot CE\cdot DE\cdot\cos\theta&&=6^2, \hspace{15mm} &(3\star) \\
 +
&&&DE^2+AE^2-2\cdot DE\cdot AE\cdot\cos\angle DEA&&=DA^2&&\quad\implies\quad DE^2+AE^2+2\cdot DE\cdot AE\cdot\cos\theta&&=7^2. \hspace{15mm} &(4\star) \\
 +
\end{alignat*}</cmath>
 +
We subtract <math>(1\star)+(3\star)</math> from <math>(2\star)+(4\star):</math>
 +
<cmath>\begin{align*}
 +
2\cdot AE\cdot BE\cdot\cos\theta+2\cdot BE\cdot CE\cdot\cos\theta+2\cdot CE\cdot DE\cdot\cos\theta+2\cdot DE\cdot AE\cdot\cos\theta&=22 \\
 +
2\cdot\cos\theta\cdot(\phantom{ }\underbrace{AE\cdot BE+BE\cdot CE+CE\cdot DE+DE\cdot AE}_{\text{Use the result from }\textbf{Remark}\text{.}}\phantom{ })&=22 \\
 +
2\cdot\cos\theta\cdot59&=22 \\
 +
\cos\theta&=\frac{11}{59}.
 +
\end{align*}</cmath>
 +
Finally, substituting this result into <math>(\bigstar)</math> gives <math>22\cos\theta=\frac{242}{59},</math> from which the answer is <math>242+59=\boxed{301}.</math>
  
Firstly, since <math>\angle AA_1D = \angle AD_1D = 90^\circ</math>, we deduce that <math>AA_1D_1D</math> is cyclic. This implies that <math>\triangle A_1OD_1 \sim \triangle AOD</math>, with a ratio of <math>\frac{A_1O}{AO} = \cos \angle A_1OA = \cos \theta</math>. This means that <math>\frac{A_1D_1}{AD} = \cos \theta</math>. Similarly, <math>\frac{A_1B_1}{AB} = \frac{B_1C_1}{BC} = \frac{C_1D_1}{CD} = \cos \theta</math>. Hence <cmath>A_1B_1 + B_1C_1 + C_1D_1 + D_1A_1 = (AB + BC + CD + DA)\cos \theta</cmath> It therefore only remains to find <math>\cos \theta</math>.
+
~MRENTHUSIASM (credit given to Math Jams's <b>2021 AIME I Discussion</b>)
  
From Ptolemy's theorem, we have that <math>(BD)(AC) = 4\times6+5\times7 = 59</math>. From Brahmagupta's Formula, <math>[ABCD] = \sqrt{(11-4)(11-5)(11-6)(11-7)} = 2\sqrt{210}</math>. But the area is also <math>\frac{1}{2}(BD)(AC)\sin\theta = \frac{59}{2}\sin\theta</math>, so <math>\sin \theta = \frac{4\sqrt{210}}{59} \implies \cos \theta = \frac{11}{59}</math>. Then the desired fraction is <math>(4+5+6+7)\cos\theta = \frac{242}{59}</math> for an answer of <math>\boxed{301}</math>.
+
===Solution 1.2 (Area Formulas)===
 +
Let the brackets denote areas.
 +
We find <math>[ABCD]</math> in two different ways:
 +
<ol style="margin-left: 1.5em;">
 +
  <li>Note that <math>\sin(180^\circ-\theta)=\sin\theta</math> holds for all <math>\theta.</math> By area addition, we get
 +
<cmath>\begin{align*}
 +
[ABCD]&=[ABE]+[BCE]+[CDE]+[DAE] \\
 +
&=\frac12\cdot AE\cdot BE\cdot\sin\angle AEB+\frac12\cdot BE\cdot CE\cdot\sin\angle BEC+\frac12\cdot CE\cdot DE\cdot\sin\angle CED+\frac12\cdot DE\cdot AE\cdot\sin\angle DEA \\
 +
&=\frac12\cdot AE\cdot BE\cdot\sin\theta+\frac12\cdot BE\cdot CE\cdot\sin\theta+\frac12\cdot CE\cdot DE\cdot\sin\theta+\frac12\cdot DE\cdot AE\cdot\sin\theta \\
 +
&=\frac12\cdot\sin\theta\cdot(\phantom{ }\underbrace{AE\cdot BE+BE\cdot CE+CE\cdot DE+DE\cdot AE}_{\text{Use the result from }\textbf{Remark}\text{.}}\phantom{ }) \\
 +
&=\frac12\cdot\sin\theta\cdot59.
 +
\end{align*}</cmath></li><p>
 +
  <li>By Brahmagupta's Formula, we get <cmath>[ABCD]=\sqrt{(s-AB)(s-BC)(s-CD)(s-DA)}=2\sqrt{210},</cmath> where <math>s=\frac{AB+BC+CD+DA}{2}=11</math> is the semiperimeter of <math>ABCD.</math></li><p>
 +
</ol>
 +
Equating the expressions for <math>[ABCD],</math> we have
 +
<cmath>\frac12\cdot\sin\theta\cdot59=2\sqrt{210},</cmath> so <math>\sin\theta=\frac{4\sqrt{210}}{59}.</math> Since <math>0^\circ<\theta<90^\circ,</math> we have <math>\cos\theta>0.</math> It follows that <cmath>\cos\theta=\sqrt{1-\sin^2\theta}=\frac{11}{59}.</cmath>
 +
Finally, substituting this result into <math>(\bigstar)</math> gives <math>22\cos\theta=\frac{242}{59},</math> from which the answer is <math>242+59=\boxed{301}.</math>
 +
 
 +
~MRENTHUSIASM (credit given to Leonard my dude)
 +
 
 +
===Remark (Ptolemy's Theorem)===
 +
In <math>ABCD,</math> we have
 +
<cmath>\begin{align*}
 +
AE\cdot BE+BE\cdot CE+CE\cdot DE+DE\cdot AE &= (AE+CE)(BE+DE) &&\hspace{10mm}\text{Factor by Grouping} \\
 +
&=AC\cdot BD &&\hspace{10mm}\text{Segment Addition} \\
 +
&=AB\cdot CD+BC\cdot DA &&\hspace{10mm}\text{Ptolemy's Theorem} \\
 +
&=59. &&\hspace{10mm}\text{Substitution}
 +
\end{align*}</cmath>
 +
~MRENTHUSIASM
  
 
==Solution 2 (Finding cos x)==
 
==Solution 2 (Finding cos x)==
 
The angle <math>\theta</math> between diagonals satisfies <cmath>\tan{\frac{\theta}{2}}=\sqrt{\frac{(s-b)(s-d)}{(s-a)(s-c)}}</cmath> (see https://en.wikipedia.org/wiki/Cyclic_quadrilateral#Angle_formulas).
 
The angle <math>\theta</math> between diagonals satisfies <cmath>\tan{\frac{\theta}{2}}=\sqrt{\frac{(s-b)(s-d)}{(s-a)(s-c)}}</cmath> (see https://en.wikipedia.org/wiki/Cyclic_quadrilateral#Angle_formulas).
Thus, <cmath>\tan{\frac{\theta}{2}}=\sqrt{\frac{(11-4)(11-6)}{(11-5)(11-7)}}</cmath> or <cmath>\tan{\frac{\theta}{2}}=\sqrt{\frac{(11-5)(11-7)}{(11-4)(11-6)}}</cmath>
+
Thus, <cmath>\tan{\frac{\theta}{2}}=\sqrt{\frac{(11-4)(11-6)}{(11-5)(11-7)}}\text{ or }\tan{\frac{\theta}{2}}=\sqrt{\frac{(11-5)(11-7)}{(11-4)(11-6)}}.</cmath>
That is, <math>\tan^2{\frac{\theta}{2}}=\frac{1-\cos^2{\frac{\theta}{2}}}{\cos^2{\frac{\theta}{2}}}=\frac{24}{35}</math> or <math>\frac{35}{24}</math>
+
That is, <math>\tan^2{\frac{\theta}{2}}=\frac{1-\cos^2{\frac{\theta}{2}}}{\cos^2{\frac{\theta}{2}}}=\frac{24}{35}</math> or <math>\frac{35}{24}</math>. Thus, <math>\cos^2{\frac{\theta}{2}}=\frac{35}{59}</math> or <math>\frac{24}{59}</math>. So,
Thus, <math>\cos^2{\frac{\theta}{2}}=\frac{35}{59}</math> or <math>\frac{24}{59}</math>
+
<cmath>\cos{\theta}=2\cos^2{\frac{\theta}{2}}-1=\pm\frac{11}{59}.</cmath>
<cmath>\cos{\theta}=2\cos^2{\frac{\theta}{2}}-1=\frac{\pm11}{59}</cmath>
+
In this context, <math>\cos{\theta}>0</math>. Thus, <math>\cos{\theta}=\frac{11}{59}</math>. The perimeter of <math>A_1B_1C_1D_1</math> is
In this context, <math>\cos{\theta}>0</math>. Thus, <math>\cos{\theta}=\frac{11}{59}</math>
+
<cmath>22\cdot\cos{\theta}=22\cdot\frac{11}{59}=\frac{242}{59},</cmath> and the answer is <math>m+n=242+59=\boxed{301}</math>.
<cmath>Ans=22*\cos{\theta}=22*\frac{11}{59}=\frac{242}{59}=\frac{m}{n}</cmath>
+
 
<cmath>m+n=242+59=\boxed{301}</cmath>
 
 
~y.grace.yu
 
~y.grace.yu
  
 
==Solution 3 (Pythagorean Theorem)==
 
==Solution 3 (Pythagorean Theorem)==
We assume that the two quadrilateral mentioned in the problem are similar (due to both of them being cyclic). Note that by Ptolemy’s, one of the diagonals has length <math>\sqrt{4 \cdot 6 + 5 \cdot 7} = \sqrt{59}.</math> [I don't believe this is correct... are the two diagonals of <math>ABCD</math> necessarily congruent? -peace09] WLOG we focus on diagonal <math>BD.</math> To find the diagonal of the inner quadrilateral, we drop the altitude from <math>A</math> and <math>C</math> and calculate the length of <math>A_1C_1.</math> Let <math>x</math> be <math>A_1D</math> (Thus <math>A_1B = \sqrt{59} - x.</math> By Pythagorean theorem, we have <cmath>49 - x^2 = 16 - (\sqrt{59} - x)^2 \implies 92 = 2\sqrt{59}x \implies x = \frac{46}{\sqrt{59}} = \frac{46\sqrt{59}}{59}.</cmath> Now let <math>y</math> be <math>C_1D.</math> (thus making <math>C_1B = \sqrt{59} - y</math>). Similarly, we have <cmath>36 - y^2 = 25 - (\sqrt{59} - y)^2 \implies 70 = 2\sqrt{59}y \implies y = \frac{35}{\sqrt{59}} = \frac{35\sqrt{59}}{59}.</cmath> We see that <math>A_1C_1</math>, the scaled down diagonal is just <math>x - y = \frac{11\sqrt{59}}{59},</math> which is <math>\frac{\frac{11\sqrt{59}}{59}}{\sqrt{59}} = \frac{11}{59}</math> times our original diagonal <math>BD,</math> implying a scale factor of <math>\frac{11}{59}.</math> Thus, due to perimeters scaling linearly, the perimeter of the new quadrilateral is simply <math>\frac{11}{59} \cdot 22 = \frac{242}{59},</math> making our answer <math>242+59 = \boxed{301}.</math>
+
We assume that the two quadrilateral mentioned in the problem are similar (due to both of them being cyclic). Note that by Ptolemy’s, one of the diagonals has length <math>\sqrt{4 \cdot 6 + 5 \cdot 7} = \sqrt{59}.</math> [I don't believe this is correct... are the two diagonals of <math>ABCD</math> necessarily congruent? -peace09]* WLOG we focus on diagonal <math>BD.</math> To find the diagonal of the inner quadrilateral, we drop the altitude from <math>A</math> and <math>C</math> and calculate the length of <math>A_1C_1.</math> Let <math>x</math> be <math>A_1D</math> (Thus <math>A_1B = \sqrt{59} - x.</math> By Pythagorean theorem, we have <cmath>49 - x^2 = 16 - \left(\sqrt{59} - x\right)^2 \implies 92 = 2\sqrt{59}x \implies x = \frac{46}{\sqrt{59}} = \frac{46\sqrt{59}}{59}.</cmath> Now let <math>y</math> be <math>C_1D.</math> (thus making <math>C_1B = \sqrt{59} - y</math>). Similarly, we have <cmath>36 - y^2 = 25 - \left(\sqrt{59} - y\right)^2 \implies 70 = 2\sqrt{59}y \implies y = \frac{35}{\sqrt{59}} = \frac{35\sqrt{59}}{59}.</cmath> We see that <math>A_1C_1</math>, the scaled down diagonal is just <math>x - y = \frac{11\sqrt{59}}{59},</math> which is <math>\frac{\frac{11\sqrt{59}}{59}}{\sqrt{59}} = \frac{11}{59}</math> times our original diagonal <math>BD,</math> implying a scale factor of <math>\frac{11}{59}.</math> Thus, due to perimeters scaling linearly, the perimeter of the new quadrilateral is simply <math>\frac{11}{59} \cdot 22 = \frac{242}{59},</math> making our answer <math>242+59 = \boxed{301}.</math>
-fidgetboss_4000
 
  
==Solution 4 (Cyclic Quadrilaterals, Similar Triangles, Law of Cosines, Ptolemy's Theorem)==
+
~fidgetboss_4000
This solution refers to the <b>Diagram</b> section.
+
 
 +
<cmath></cmath>
 +
<math>*</math>Indeed, the diagonals do not have length <math>\sqrt{59}</math>. However, here's why it works out: Let the length of diagonal BD be a. Then, by the same logic as given in the solution by fidgetboss_4000, <math>x=\frac{33+a^{2}}{2a}</math>, <math>y=\frac{11+a^{2}}{2a}</math>, so <math>x-y=\frac{11}{a}</math>. Then, why does dividing by a to get a ratio work? It's because the orientation of quadrilaterals is different! In other words, instead of diagonal BD corresponding to diagonal <math>B_1</math> <math>D_1</math>, it corresponds to diagonal <math>A_1</math> <math>C_1</math>. Thus, to get the right ratio, we can find the ratio of the multiplied diagonals, then take the square root (this square root part is crucial. It happens because we essentially are taking something two-dimensional on the numerator and denominator, so to make it a one-dimensional similarity ratio, we must take the square root to half the dimension on each part). This yields <math>\sqrt{\frac{121}{a^{2}\cdot b^{2}}}</math>=<math>\frac{11}{a\cdot b}</math>. However, by Ptolemy, <math>a\cdot b</math>=59. Thus, the ratio is indeed <math>\frac{11}{59}</math>. ~MATH-TITAN
  
Suppose <math>\overline{AC}</math> and <math>\overline{BD}</math> intersect at <math>E,</math> and let <math>\theta=\angle AEB.</math>
+
==Solution 4 (Symmetry)==
 +
<i><b>Solution</b></i>
  
By the <b>Converse of the Inscribed Angle Theorem</b>, if distinct points <math>X</math> and <math>Y</math> lie on the same side of <math>\overline{PQ}</math> (but not on <math>\overline{PQ}</math> itself) for which <math>\angle PXQ=\angle PYQ,</math> then <math>P,Q,X,</math> and <math>Y</math> are cyclic. From the Converse of the Inscribed Angle Theorem, quadrilaterals <math>ABA_1B_1,BCC_1B_1,CDC_1D_1,</math> and <math>DAA_1D_1</math> are all cyclic.
+
[[File:AIME-I-2021-11a.png|350px|right]]
  
In every cyclic quadrilateral, each pair of opposite angles is supplementary. So, we have <math>\angle EA_1B_1=\angle EAB</math> and <math>\angle EB_1A_1=\angle EBA</math> by angle chasing, from which <math>\triangle A_1B_1E \sim \triangle ABE</math> by AA, with the ratio of similitude <cmath>\frac{A_1B_1}{AB}=\underbrace{\frac{A_1E}{AE}}_{\substack{\text{right} \\ \triangle A_1AE}}=\underbrace{\frac{B_1E}{BE}}_{\substack{\text{right} \\ \triangle B_1BE}}=\cos\theta. \hspace{15mm}(1)</cmath>
+
In accordance with <b>Claim 1,</b> the ratios of pairs of one-color segments are the same and equal to <math>\cos \theta,</math> where <math>\theta</math> is the acute angle between the diagonals.
Similarly, we have <math>\angle EC_1D_1=\angle ECD</math> and <math>\angle ED_1C_1=\angle EDC</math> by angle chasing, from which <math>\triangle C_1D_1E \sim \triangle CDE</math> by AA, with the ratio of similitude <cmath>\frac{C_1D_1}{CD}=\underbrace{\frac{C_1E}{CE}}_{\substack{\text{right} \\ \triangle C_1CE}}=\underbrace{\frac{D_1E}{DE}}_{\substack{\text{right} \\ \triangle D_1DE}}=\cos\theta. \hspace{14.75mm}(2)</cmath>
 
We apply the Transitive Property to <math>(1)</math> and <math>(2):</math>
 
<ol style="margin-left: 1.5em;">
 
  <li>We get <math>\frac{B_1E}{BE}=\frac{C_1E}{CE}=\cos\theta,</math> from which <math>\triangle B_1C_1E \sim \triangle BCE</math> by SAS, with the ratio of similitude <cmath>\frac{B_1C_1}{BC}=\frac{B_1E}{BE}=\frac{C_1E}{CE}=\cos\theta. \hspace{14.75mm}(3)</cmath></li><p>
 
  <li>We get <math>\frac{D_1E}{DE}=\frac{A_1E}{AE}=\cos\theta,</math> from which <math>\triangle D_1A_1E \sim \triangle DAE</math> by SAS, with the ratio of similitude <cmath>\frac{D_1A_1}{DA}=\frac{D_1E}{DE}=\frac{A_1E}{AE}=\cos\theta. \hspace{14mm}(4)</cmath></li><p>
 
</ol>
 
From <math>(1),(2),(3),</math> and <math>(4),</math> The perimeter of <math>A_1B_1C_1D_1</math> is
 
 
<cmath>\begin{align*}
 
<cmath>\begin{align*}
A_1B_1+B_1C_1+C_1D_1+D_1A_1&=AB\cos\theta+BC\cos\theta+CD\cos\theta+DA\cos\theta \\
+
s &= A'B' + B'C' + C'D' + D'A' \\
&=(AB+BC+CD+DA)\cos\theta \\
+
  &= (AB + BC + CD + DA)\cos \theta \\
&=22\cos\theta. \hspace{65mm}(\bigstar)
+
  &= (a + b + c + d)\cos \theta \\
 +
  &= 22\cos \theta.
 
\end{align*}</cmath>
 
\end{align*}</cmath>
Note that <math>\cos(180^\circ-\theta)=-\cos\theta</math> for all <math>\theta.</math> We apply the Law of Cosines to <math>\triangle ABE, \triangle BCE, \triangle CDE,</math> and <math>\triangle DAE,</math> respectively:
+
In accordance with <b>Claim 2,</b>
<cmath>\begin{align*}
+
<cmath>\begin{align*} 2(ac + bd)\cos \theta = |d^2 – c^2 + b^2 – a^2|.\end{align*}</cmath>
AB^2=AE^2+BE^2-2\cdot AE\cdot BE\cdot\cos\theta&=4^2, &(1\star) \\
+
<cmath>2 \cdot 59 \cos \theta = |13 + 9|.</cmath>
BC^2=BE^2+CE^2+2\cdot BE\cdot CE\cdot\cos\theta&=5^2, &(2\star) \\
+
<cmath>s = 22\cos \theta = \frac{22 \cdot 11}{59} = \frac{242}{59}.</cmath>
CD^2=CE^2+DE^2-2\cdot CE\cdot DE\cdot\cos\theta&=6^2, &(3\star) \\
+
Therefore, the answer is <math>242+59=\boxed{301}.</math>
DA^2=DE^2+AE^2+2\cdot DE\cdot AE\cdot\cos\theta&=7^2. &(4\star) \\
+
 
\end{align*}</cmath>
+
<i><b>Claim 1</b></i>
We subtract <math>(1\star)+(3\star)</math> from <math>(2\star)+(4\star),</math> factor the result, and apply Ptolemy's Theorem to <math>ABCD:</math>
+
[[File:AIME-I-2021-11b.png|500px|right]]
<cmath>\begin{align*}
+
In the triangle <math>ABC</math>, the points <math>B'</math> and <math>C'</math> are the bases of the heights dropped from the vertices <math>B</math> and <math>C</math>, respectively.  <math>\angle A = \alpha</math>. Then
2\cdot\cos\theta\cdot(AE\cdot BE+BE\cdot CE+CE\cdot DE+DE\cdot AE)&=22 \\
+
<cmath>B'C'=\begin{cases}
\cos\theta\cdot(AE\cdot BE+BE\cdot CE+CE\cdot DE+DE\cdot AE)&=11 \\
+
BC \cos\alpha, & \textrm{if } \alpha < 90^\circ, \\
\cos\theta\cdot(AE+CE)\cdot(BE+DE)&=11 \\
+
BC \cos (180^\circ – \alpha), & \textrm{if } \alpha >90^\circ.
\cos\theta\cdot(AC\cdot BD)&=11. \\
+
\end{cases}=|BC\cos{\alpha}|
\cos\theta\cdot(AB\cdot CD+BC\cdot DA)&=11
+
</cmath>
\end{align*}</cmath>
+
 
<b>IN PROGRESS. NO EDIT PLEASE. A MILLION THANKS.
+
<i><b>Proof</b></i>
 +
 
 +
Denote the orthocenter by  <math>A'</math>. Quadrilateral <math>B'C'BC</math> is inscribed in a circle with diameter <math>BC</math>, so the marked <math>\angle B = \angle B'.</math>
 +
 
 +
If  <math>\alpha < 90^\circ,</math> the <math>\triangle AB'C' \sim \triangle ABC,</math> the similarity coefficient is <math>AC' : AC = \cos \alpha.</math>
 +
So <math>B'C' : BC = \cos \alpha.</math>
 +
 
 +
If  <math>\alpha > 90^\circ,</math> the <math>\triangle A'B'C' \sim \triangle A'BC,</math> the similarity coefficient is
 +
<math>A'C' : A'C = \cos (180^\circ – \alpha).</math> So <math>B'C' : BC = \cos (180^\circ – \alpha).</math>
 +
 
 +
<i><b>Claim 2</b></i>
 +
[[File:AIME-I-2021-11c.png|300px|right]]
 +
Given an inscribed quadrilateral <math>ABCD</math> with sides <math>AB = a, BC = b, CD = c,</math> and <math>DA = d.</math> Prove that the <math>\angle \theta < 90^\circ</math> between the diagonals is given by
 +
<cmath>\begin{align*} \cos \theta = \frac {|d^2 – c^2 + b^2 – a^2|}{2(ac + bd)}.\end{align*}</cmath>
 +
<i><b>Proof</b></i>
 +
 
 +
Let the point <math>B'</math> be symmetric to <math>B</math> with respect to the perpendicular bisector <math>AC.</math> Then the quadrilateral <math>AB'CD</math> is an inscribed one, <math>AB' = b, B'C = a.</math>
 +
 
 +
<cmath> 2 \angle AEB = \overset{\Large\frown} {AB}  + \overset{\Large\frown} {CD}.</cmath>
 +
<cmath>\begin{align*} 2\angle B'AD = \overset{\Large\frown} {B'C} + \overset{\Large\frown} {CD} = \overset{\Large\frown} {AB} + \overset{\Large\frown} {CD} \implies \angle AEB = \angle B'AD\end{align*}</cmath>
  
I WILL FINISH WITHIN ONE DAY.</b>
+
We apply the Law of Cosines to <math>\triangle AB'D</math> and <math>\triangle CB'D</math>:
 +
<cmath>\begin{align*} B'D^2 = AD^2 + AB'^2 – 2 AD \cdot AB' \cos \theta,\end{align*}</cmath>
 +
<cmath>B'D^2 = CD^2 + CB'^2 + 2 CD \cdot CB' \cos \theta,</cmath>
 +
<cmath>d^2 + b^2 – 2 bd \cos \theta = c^2 + a^2 + 2ac \cos \theta,</cmath>
 +
<cmath>2(ac + bd) \cos \theta = |d^2 – c^2 + b^2 – a^2|.</cmath>
 +
'''vladimir.shelomovskii@gmail.com, vvsss'''
  
~MRENTHUSIASM (inspired by Math Jams's <b>2021 AIME I Discussion</b>)
+
==Note==
 +
This problem is kinda similar to [[2021 AIME II Problems/Problem 12]]
  
==See also==
+
==See Also==
 
{{AIME box|year=2021|n=I|num-b=10|num-a=12}}
 
{{AIME box|year=2021|n=I|num-b=10|num-a=12}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 18:56, 24 December 2023

Problem

Let $ABCD$ be a cyclic quadrilateral with $AB=4,BC=5,CD=6,$ and $DA=7.$ Let $A_1$ and $C_1$ be the feet of the perpendiculars from $A$ and $C,$ respectively, to line $BD,$ and let $B_1$ and $D_1$ be the feet of the perpendiculars from $B$ and $D,$ respectively, to line $AC.$ The perimeter of $A_1B_1C_1D_1$ is $\frac mn,$ where $m$ and $n$ are relatively prime positive integers. Find $m+n.$

Diagram

[asy] /* Made by MRENTHUSIASM */ size(300);  pair A, B, C, D, A1, B1, C1, D1; A = origin; C = (sqrt(53041)/31,0); B = intersectionpoints(Circle(A,4),Circle(C,5))[0]; D = intersectionpoints(Circle(A,7),Circle(C,6))[1]; A1 = foot(A,B,D); C1 = foot(C,B,D); B1 = foot(B,A,C); D1 = foot(D,A,C); markscalefactor=0.025; draw(rightanglemark(A,A1,B),red); draw(rightanglemark(B,B1,A),red); draw(rightanglemark(C,C1,D),red); draw(rightanglemark(D,D1,C),red); draw(A1--B1--C1--D1--cycle,green); dot("$A$",A,1.5*W,linewidth(4)); dot("$B$",B,1.5*dir(180-aCos(11/59)),linewidth(4)); dot("$C$",C,1.5*E,linewidth(4)); dot("$D$",D,1.5*dir(-aCos(11/59)),linewidth(4)); dot("$A_1$",A1,1.5*dir(A1-A),linewidth(4)); dot("$B_1$",B1,1.5*S,linewidth(4)); dot("$C_1$",C1,1.5*dir(C1-C),linewidth(4)); dot("$D_1$",D1,1.5*N,linewidth(4)); draw(A--B--C--D--cycle^^A--C^^B--D^^circumcircle(A,B,C)); draw(A--A1^^B--B1^^C--C1^^D--D1,dashed); [/asy] ~MRENTHUSIASM

Solution 1 (Cyclic Quadrilaterals, Similar Triangles, and Trigonometry)

This solution refers to the Diagram section.

By the Converse of the Inscribed Angle Theorem, if distinct points $X$ and $Y$ lie on the same side of $\overline{PQ}$ (but not on $\overline{PQ}$ itself) for which $\angle PXQ=\angle PYQ,$ then $P,Q,X,$ and $Y$ are cyclic. From the Converse of the Inscribed Angle Theorem, quadrilaterals $ABA_1B_1,BCC_1B_1,CDC_1D_1,$ and $DAA_1D_1$ are all cyclic.

Suppose $\overline{AC}$ and $\overline{BD}$ intersect at $E,$ and let $\angle AEB=\theta.$ It follows that $\angle CED=\theta$ and $\angle BEC=\angle DEA=180^\circ-\theta.$

We obtain the following diagram: [asy] /* Made by MRENTHUSIASM */ size(300);  pair A, B, C, D, A1, B1, C1, D1, P, M1, M2; A = origin; C = (sqrt(53041)/31,0); B = intersectionpoints(Circle(A,4),Circle(C,5))[0]; D = intersectionpoints(Circle(A,7),Circle(C,6))[1]; A1 = foot(A,B,D); C1 = foot(C,B,D); B1 = foot(B,A,C); D1 = foot(D,A,C); P = intersectionpoint(A--C,B--D); M1 = midpoint(A--B); M2 = midpoint(C--D); markscalefactor=0.025; draw(rightanglemark(A,A1,B),red); draw(rightanglemark(B,B1,A),red); draw(rightanglemark(C,C1,D),red); draw(rightanglemark(D,D1,C),red); draw(Arc(M1,A,B)^^Arc(M2,C,D),blue); draw(A1--B1--C1--D1--cycle,green); dot("$A$",A,1.5*W,linewidth(4)); dot("$B$",B,1.5*dir(180-aCos(11/59)),linewidth(4)); dot("$C$",C,1.5*E,linewidth(4)); dot("$D$",D,1.5*dir(-aCos(11/59)),linewidth(4)); dot("$A_1$",A1,1.5*dir(A1-A),linewidth(4)); dot("$B_1$",B1,1.5*S,linewidth(4)); dot("$C_1$",C1,1.5*dir(C1-C),linewidth(4)); dot("$D_1$",D1,1.5*N,linewidth(4)); dot("$E$",P,dir((180-aCos(11/59))/2),linewidth(4)); label("$\theta$",P,dir(180-aCos(11/59)/2),red); draw(A--B--C--D--cycle^^A--C^^B--D^^circumcircle(A,B,C)); draw(A--A1^^B--B1^^C--C1^^D--D1,dashed); [/asy] In every cyclic quadrilateral, each pair of opposite angles is supplementary. So, we have $\angle EA_1B_1=\angle EAB$ (both supplementary to $\angle B_1A_1B$) and $\angle EB_1A_1=\angle EBA$ (both supplementary to $\angle A_1B_1A$), from which $\triangle A_1B_1E \sim \triangle ABE$ by AA, with the ratio of similitude \[\frac{A_1B_1}{AB}=\underbrace{\frac{A_1E}{AE}}_{\substack{\text{right} \\ \triangle A_1AE}}=\underbrace{\frac{B_1E}{BE}}_{\substack{\text{right} \\ \triangle B_1BE}}=\cos\theta. \hspace{15mm}(1)\] Similarly, we have $\angle EC_1D_1=\angle ECD$ (both supplementary to $\angle D_1C_1D$) and $\angle ED_1C_1=\angle EDC$ (both supplementary to $\angle C_1D_1C$), from which $\triangle C_1D_1E \sim \triangle CDE$ by AA, with the ratio of similitude \[\frac{C_1D_1}{CD}=\underbrace{\frac{C_1E}{CE}}_{\substack{\text{right} \\ \triangle C_1CE}}=\underbrace{\frac{D_1E}{DE}}_{\substack{\text{right} \\ \triangle D_1DE}}=\cos\theta. \hspace{14.75mm}(2)\] We apply the Transitive Property to $(1)$ and $(2):$

  1. We get $\frac{B_1E}{BE}=\frac{C_1E}{CE}=\cos\theta,$ so $\triangle B_1C_1E \sim \triangle BCE$ by SAS, with the ratio of similitude \[\frac{B_1C_1}{BC}=\frac{B_1E}{BE}=\frac{C_1E}{CE}=\cos\theta. \hspace{14.75mm}(3)\]
  2. We get $\frac{D_1E}{DE}=\frac{A_1E}{AE}=\cos\theta,$ so $\triangle D_1A_1E \sim \triangle DAE$ by SAS, with the ratio of similitude \[\frac{D_1A_1}{DA}=\frac{D_1E}{DE}=\frac{A_1E}{AE}=\cos\theta. \hspace{14mm}(4)\]

From $(1),(2),(3),$ and $(4),$ the perimeter of $A_1B_1C_1D_1$ is \begin{align*} A_1B_1+B_1C_1+C_1D_1+D_1A_1&=AB\cos\theta+BC\cos\theta+CD\cos\theta+DA\cos\theta \\ &=(AB+BC+CD+DA)\cos\theta \\ &=22\cos\theta. &&\hspace{5mm}(\bigstar) \end{align*} Two solutions follow from here:

Solution 1.1 (Law of Cosines)

Note that $\cos(180^\circ-\theta)=-\cos\theta$ holds for all $\theta.$ We apply the Law of Cosines to $\triangle ABE, \triangle BCE, \triangle CDE,$ and $\triangle DAE,$ respectively: \begin{alignat*}{12} &&&AE^2+BE^2-2\cdot AE\cdot BE\cdot\cos\angle AEB&&=AB^2&&\quad\implies\quad AE^2+BE^2-2\cdot AE\cdot BE\cdot\cos\theta&&=4^2, \hspace{15mm} &(1\star) \\ &&&BE^2+CE^2-2\cdot BE\cdot CE\cdot\cos\angle BEC&&=BC^2&&\quad\implies\quad BE^2+CE^2+2\cdot BE\cdot CE\cdot\cos\theta&&=5^2, \hspace{15mm} &(2\star) \\ &&&CE^2+DE^2-2\cdot CE\cdot DE\cdot\cos\angle CED&&=CD^2&&\quad\implies\quad CE^2+DE^2-2\cdot CE\cdot DE\cdot\cos\theta&&=6^2, \hspace{15mm} &(3\star) \\ &&&DE^2+AE^2-2\cdot DE\cdot AE\cdot\cos\angle DEA&&=DA^2&&\quad\implies\quad DE^2+AE^2+2\cdot DE\cdot AE\cdot\cos\theta&&=7^2. \hspace{15mm} &(4\star) \\ \end{alignat*} We subtract $(1\star)+(3\star)$ from $(2\star)+(4\star):$ \begin{align*} 2\cdot AE\cdot BE\cdot\cos\theta+2\cdot BE\cdot CE\cdot\cos\theta+2\cdot CE\cdot DE\cdot\cos\theta+2\cdot DE\cdot AE\cdot\cos\theta&=22 \\ 2\cdot\cos\theta\cdot(\phantom{ }\underbrace{AE\cdot BE+BE\cdot CE+CE\cdot DE+DE\cdot AE}_{\text{Use the result from }\textbf{Remark}\text{.}}\phantom{ })&=22 \\ 2\cdot\cos\theta\cdot59&=22 \\ \cos\theta&=\frac{11}{59}. \end{align*} Finally, substituting this result into $(\bigstar)$ gives $22\cos\theta=\frac{242}{59},$ from which the answer is $242+59=\boxed{301}.$

~MRENTHUSIASM (credit given to Math Jams's 2021 AIME I Discussion)

Solution 1.2 (Area Formulas)

Let the brackets denote areas. We find $[ABCD]$ in two different ways:

  1. Note that $\sin(180^\circ-\theta)=\sin\theta$ holds for all $\theta.$ By area addition, we get \begin{align*} [ABCD]&=[ABE]+[BCE]+[CDE]+[DAE] \\ &=\frac12\cdot AE\cdot BE\cdot\sin\angle AEB+\frac12\cdot BE\cdot CE\cdot\sin\angle BEC+\frac12\cdot CE\cdot DE\cdot\sin\angle CED+\frac12\cdot DE\cdot AE\cdot\sin\angle DEA \\ &=\frac12\cdot AE\cdot BE\cdot\sin\theta+\frac12\cdot BE\cdot CE\cdot\sin\theta+\frac12\cdot CE\cdot DE\cdot\sin\theta+\frac12\cdot DE\cdot AE\cdot\sin\theta \\ &=\frac12\cdot\sin\theta\cdot(\phantom{ }\underbrace{AE\cdot BE+BE\cdot CE+CE\cdot DE+DE\cdot AE}_{\text{Use the result from }\textbf{Remark}\text{.}}\phantom{ }) \\ &=\frac12\cdot\sin\theta\cdot59. \end{align*}
  2. By Brahmagupta's Formula, we get \[[ABCD]=\sqrt{(s-AB)(s-BC)(s-CD)(s-DA)}=2\sqrt{210},\] where $s=\frac{AB+BC+CD+DA}{2}=11$ is the semiperimeter of $ABCD.$

Equating the expressions for $[ABCD],$ we have \[\frac12\cdot\sin\theta\cdot59=2\sqrt{210},\] so $\sin\theta=\frac{4\sqrt{210}}{59}.$ Since $0^\circ<\theta<90^\circ,$ we have $\cos\theta>0.$ It follows that \[\cos\theta=\sqrt{1-\sin^2\theta}=\frac{11}{59}.\] Finally, substituting this result into $(\bigstar)$ gives $22\cos\theta=\frac{242}{59},$ from which the answer is $242+59=\boxed{301}.$

~MRENTHUSIASM (credit given to Leonard my dude)

Remark (Ptolemy's Theorem)

In $ABCD,$ we have \begin{align*} AE\cdot BE+BE\cdot CE+CE\cdot DE+DE\cdot AE &= (AE+CE)(BE+DE) &&\hspace{10mm}\text{Factor by Grouping} \\ &=AC\cdot BD &&\hspace{10mm}\text{Segment Addition} \\ &=AB\cdot CD+BC\cdot DA &&\hspace{10mm}\text{Ptolemy's Theorem} \\ &=59. &&\hspace{10mm}\text{Substitution} \end{align*} ~MRENTHUSIASM

Solution 2 (Finding cos x)

The angle $\theta$ between diagonals satisfies \[\tan{\frac{\theta}{2}}=\sqrt{\frac{(s-b)(s-d)}{(s-a)(s-c)}}\] (see https://en.wikipedia.org/wiki/Cyclic_quadrilateral#Angle_formulas). Thus, \[\tan{\frac{\theta}{2}}=\sqrt{\frac{(11-4)(11-6)}{(11-5)(11-7)}}\text{ or }\tan{\frac{\theta}{2}}=\sqrt{\frac{(11-5)(11-7)}{(11-4)(11-6)}}.\] That is, $\tan^2{\frac{\theta}{2}}=\frac{1-\cos^2{\frac{\theta}{2}}}{\cos^2{\frac{\theta}{2}}}=\frac{24}{35}$ or $\frac{35}{24}$. Thus, $\cos^2{\frac{\theta}{2}}=\frac{35}{59}$ or $\frac{24}{59}$. So, \[\cos{\theta}=2\cos^2{\frac{\theta}{2}}-1=\pm\frac{11}{59}.\] In this context, $\cos{\theta}>0$. Thus, $\cos{\theta}=\frac{11}{59}$. The perimeter of $A_1B_1C_1D_1$ is \[22\cdot\cos{\theta}=22\cdot\frac{11}{59}=\frac{242}{59},\] and the answer is $m+n=242+59=\boxed{301}$.

~y.grace.yu

Solution 3 (Pythagorean Theorem)

We assume that the two quadrilateral mentioned in the problem are similar (due to both of them being cyclic). Note that by Ptolemy’s, one of the diagonals has length $\sqrt{4 \cdot 6 + 5 \cdot 7} = \sqrt{59}.$ [I don't believe this is correct... are the two diagonals of $ABCD$ necessarily congruent? -peace09]* WLOG we focus on diagonal $BD.$ To find the diagonal of the inner quadrilateral, we drop the altitude from $A$ and $C$ and calculate the length of $A_1C_1.$ Let $x$ be $A_1D$ (Thus $A_1B = \sqrt{59} - x.$ By Pythagorean theorem, we have \[49 - x^2 = 16 - \left(\sqrt{59} - x\right)^2 \implies 92 = 2\sqrt{59}x \implies x = \frac{46}{\sqrt{59}} = \frac{46\sqrt{59}}{59}.\] Now let $y$ be $C_1D.$ (thus making $C_1B = \sqrt{59} - y$). Similarly, we have \[36 - y^2 = 25 - \left(\sqrt{59} - y\right)^2 \implies 70 = 2\sqrt{59}y \implies y = \frac{35}{\sqrt{59}} = \frac{35\sqrt{59}}{59}.\] We see that $A_1C_1$, the scaled down diagonal is just $x - y = \frac{11\sqrt{59}}{59},$ which is $\frac{\frac{11\sqrt{59}}{59}}{\sqrt{59}} = \frac{11}{59}$ times our original diagonal $BD,$ implying a scale factor of $\frac{11}{59}.$ Thus, due to perimeters scaling linearly, the perimeter of the new quadrilateral is simply $\frac{11}{59} \cdot 22 = \frac{242}{59},$ making our answer $242+59 = \boxed{301}.$

~fidgetboss_4000

\[\] $*$Indeed, the diagonals do not have length $\sqrt{59}$. However, here's why it works out: Let the length of diagonal BD be a. Then, by the same logic as given in the solution by fidgetboss_4000, $x=\frac{33+a^{2}}{2a}$, $y=\frac{11+a^{2}}{2a}$, so $x-y=\frac{11}{a}$. Then, why does dividing by a to get a ratio work? It's because the orientation of quadrilaterals is different! In other words, instead of diagonal BD corresponding to diagonal $B_1$ $D_1$, it corresponds to diagonal $A_1$ $C_1$. Thus, to get the right ratio, we can find the ratio of the multiplied diagonals, then take the square root (this square root part is crucial. It happens because we essentially are taking something two-dimensional on the numerator and denominator, so to make it a one-dimensional similarity ratio, we must take the square root to half the dimension on each part). This yields $\sqrt{\frac{121}{a^{2}\cdot b^{2}}}$=$\frac{11}{a\cdot b}$. However, by Ptolemy, $a\cdot b$=59. Thus, the ratio is indeed $\frac{11}{59}$. ~MATH-TITAN

Solution 4 (Symmetry)

Solution

AIME-I-2021-11a.png

In accordance with Claim 1, the ratios of pairs of one-color segments are the same and equal to $\cos \theta,$ where $\theta$ is the acute angle between the diagonals. \begin{align*}  s &= A'B' + B'C' + C'D' + D'A' \\    &= (AB + BC + CD + DA)\cos \theta \\    &= (a + b + c + d)\cos \theta \\    &= 22\cos \theta. \end{align*} In accordance with Claim 2, \begin{align*} 2(ac + bd)\cos \theta = |d^2 – c^2 + b^2 – a^2|.\end{align*} \[2 \cdot 59 \cos \theta = |13 + 9|.\] \[s = 22\cos \theta = \frac{22 \cdot 11}{59} = \frac{242}{59}.\] Therefore, the answer is $242+59=\boxed{301}.$

Claim 1

AIME-I-2021-11b.png

In the triangle $ABC$, the points $B'$ and $C'$ are the bases of the heights dropped from the vertices $B$ and $C$, respectively. $\angle A = \alpha$. Then \[B'C'=\begin{cases} BC \cos\alpha, & \textrm{if } \alpha < 90^\circ, \\ BC \cos (180^\circ – \alpha), & \textrm{if } \alpha >90^\circ. \end{cases}=|BC\cos{\alpha}|\]

Proof

Denote the orthocenter by $A'$. Quadrilateral $B'C'BC$ is inscribed in a circle with diameter $BC$, so the marked $\angle B = \angle B'.$

If $\alpha < 90^\circ,$ the $\triangle AB'C' \sim \triangle ABC,$ the similarity coefficient is $AC' : AC = \cos \alpha.$ So $B'C' : BC = \cos \alpha.$

If $\alpha > 90^\circ,$ the $\triangle A'B'C' \sim \triangle A'BC,$ the similarity coefficient is $A'C' : A'C = \cos (180^\circ – \alpha).$ So $B'C' : BC = \cos (180^\circ – \alpha).$

Claim 2

AIME-I-2021-11c.png

Given an inscribed quadrilateral $ABCD$ with sides $AB = a, BC = b, CD = c,$ and $DA = d.$ Prove that the $\angle \theta < 90^\circ$ between the diagonals is given by \begin{align*} \cos \theta = \frac {|d^2 – c^2 + b^2 – a^2|}{2(ac + bd)}.\end{align*} Proof

Let the point $B'$ be symmetric to $B$ with respect to the perpendicular bisector $AC.$ Then the quadrilateral $AB'CD$ is an inscribed one, $AB' = b, B'C = a.$

\[2 \angle AEB = \overset{\Large\frown} {AB}  + \overset{\Large\frown} {CD}.\] \begin{align*} 2\angle B'AD = \overset{\Large\frown} {B'C} + \overset{\Large\frown} {CD} = \overset{\Large\frown} {AB} + \overset{\Large\frown} {CD} \implies \angle AEB = \angle B'AD\end{align*}

We apply the Law of Cosines to $\triangle AB'D$ and $\triangle CB'D$: \begin{align*} B'D^2 = AD^2 + AB'^2 – 2 AD \cdot AB' \cos \theta,\end{align*} \[B'D^2 = CD^2 + CB'^2 + 2 CD \cdot CB' \cos \theta,\] \[d^2 + b^2 – 2 bd \cos \theta = c^2 + a^2 + 2ac \cos \theta,\] \[2(ac + bd) \cos \theta = |d^2 – c^2 + b^2 – a^2|.\] vladimir.shelomovskii@gmail.com, vvsss

Note

This problem is kinda similar to 2021 AIME II Problems/Problem 12

See Also

2021 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 10
Followed by
Problem 12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png