Difference between revisions of "1978 AHSME Problems/Problem 18"

(Created page with "==Problem==")
 
(Solution)
 
(2 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 
==Problem==
 
==Problem==
 +
What is the smallest positive integer <math>n</math> such that <math>\sqrt{n}-\sqrt{n-1}<.01</math>?
 +
 +
<math>\textbf{(A) }2499\qquad \textbf{(B) }2500\qquad \textbf{(C) }2501\qquad \textbf{(D) }10,000\qquad  \textbf{(E) }\text{There is no such integer}</math>
 +
 +
==Solution==
 +
Adding <math>\sqrt{n - 1}</math> to both sides, we get
 +
<cmath>\sqrt{n} < \sqrt{n - 1} + 0.01.</cmath>
 +
Squaring both sides, we get
 +
<cmath>n < n - 1 + 0.02 \sqrt{n - 1} + 0.0001,</cmath>
 +
which simplifies to
 +
<cmath>0.9999 < 0.02 \sqrt{n - 1},</cmath>
 +
or
 +
<cmath>\sqrt{n - 1} > 49.995.</cmath>
 +
Squaring both sides again, we get
 +
<cmath>n - 1 > 2499.500025,</cmath>
 +
so <math>n > 2500.500025</math>. The smallest positive integer <math>n</math> that satisfies this inequality is <math>\boxed{2501}</math>.
 +
==alternative==
 +
Taking reciprocals and flipping the inequality we get <cmath>\sqrt{n}+\sqrt{n-1}>100</cmath> Which is easy to see the answer is
 +
<math>\boxed{2501}</math>.
 +
-bjump

Latest revision as of 20:09, 13 July 2022

Problem

What is the smallest positive integer $n$ such that $\sqrt{n}-\sqrt{n-1}<.01$?

$\textbf{(A) }2499\qquad \textbf{(B) }2500\qquad \textbf{(C) }2501\qquad \textbf{(D) }10,000\qquad  \textbf{(E) }\text{There is no such integer}$

Solution

Adding $\sqrt{n - 1}$ to both sides, we get \[\sqrt{n} < \sqrt{n - 1} + 0.01.\] Squaring both sides, we get \[n < n - 1 + 0.02 \sqrt{n - 1} + 0.0001,\] which simplifies to \[0.9999 < 0.02 \sqrt{n - 1},\] or \[\sqrt{n - 1} > 49.995.\] Squaring both sides again, we get \[n - 1 > 2499.500025,\] so $n > 2500.500025$. The smallest positive integer $n$ that satisfies this inequality is $\boxed{2501}$.

alternative

Taking reciprocals and flipping the inequality we get \[\sqrt{n}+\sqrt{n-1}>100\] Which is easy to see the answer is

$\boxed{2501}$.

-bjump