Difference between revisions of "2020 AMC 10B Problems/Problem 8"

(Solution 2: This solution is similar to Sol 1, but with some severe weaknesses: 1. For notations, it uses ABC instead of PQR. 2. The min/max argument is unnecessary to solve the solution, and I found it a little confusing. 3. Lengths shouldn't overli)
(Video Solution)
 
(14 intermediate revisions by 5 users not shown)
Line 5: Line 5:
 
<math>\textbf{(A)}\ 2 \qquad\textbf{(B)}\ 4 \qquad\textbf{(C)}\  6 \qquad\textbf{(D)}\ 8 \qquad\textbf{(E)}\ 12</math>
 
<math>\textbf{(A)}\ 2 \qquad\textbf{(B)}\ 4 \qquad\textbf{(C)}\  6 \qquad\textbf{(D)}\ 8 \qquad\textbf{(E)}\ 12</math>
  
==Solution 1 (Altitude and Circle)==
+
==Solution 1 (Geometry)==
 
Let the brackets denote areas. We are given that <cmath>[PQR]=\frac12\cdot PQ\cdot h_R=12.</cmath> Since <math>PQ=8,</math> it follows that <math>h_R=3.</math>
 
Let the brackets denote areas. We are given that <cmath>[PQR]=\frac12\cdot PQ\cdot h_R=12.</cmath> Since <math>PQ=8,</math> it follows that <math>h_R=3.</math>
  
 
We construct a circle with diameter <math>\overline{PQ}.</math> All such locations for <math>R</math> are shown below:
 
We construct a circle with diameter <math>\overline{PQ}.</math> All such locations for <math>R</math> are shown below:
 +
 
<asy>
 
<asy>
 
/* Made by MRENTHUSIASM */
 
/* Made by MRENTHUSIASM */
Line 45: Line 46:
 
dot(I1,linewidth(4));
 
dot(I1,linewidth(4));
 
dot(I2,linewidth(4));
 
dot(I2,linewidth(4));
 
+
Label L1 = Label("$8$", align=(0,0), position=MidPoint, filltype=Fill(3,0,white));
Label L1 = Label("$8$", align=(0,0), position=MidPoint, filltype=Fill(white));
+
Label L2 = Label("$3$", align=(0,0), position=MidPoint, filltype=Fill(0,3,white));
Label L2 = Label("$3$", align=(0,0), position=MidPoint, filltype=Fill(white));
 
 
draw(P-(0,5)--Q-(0,5), L=L1, arrow=Arrows(),bar=Bars(15));
 
draw(P-(0,5)--Q-(0,5), L=L1, arrow=Arrows(),bar=Bars(15));
 
draw(R4+(2,0)--Q+(2,0), L=L2, arrow=Arrows(),bar=Bars(15));
 
draw(R4+(2,0)--Q+(2,0), L=L2, arrow=Arrows(),bar=Bars(15));
 
draw(Q+(2,0)--R8+(2,0), L=L2, arrow=Arrows(),bar=Bars(15));
 
draw(Q+(2,0)--R8+(2,0), L=L2, arrow=Arrows(),bar=Bars(15));
 
</asy>
 
</asy>
 +
 
We apply casework to the right angle of <math>\triangle PQR:</math>
 
We apply casework to the right angle of <math>\triangle PQR:</math>
 
<ol style="margin-left: 1.5em;">
 
<ol style="margin-left: 1.5em;">
Line 67: Line 68:
 
~MRENTHUSIASM
 
~MRENTHUSIASM
  
==Solution 4 (Algebra)==
+
==Solution 2 (Algebra)==
Let a and b be the distances of R from P and Q, respectively. By the Pythagorean Theorem, we have <math>a^2 + b^2 = 64</math>. Since the area of this triangle is 12, we get <math>a * b = 12 * 2 = 24</math>. Thus <math>b = 24/a</math>. Now substitute this into the other equation to get <math>a^2 + (24/a)^2 = 64</math>. Multiplying by <math>a^2</math> on both sides, we get <math>a^4 + 24 = 64*a^2</math>. Now let <math>y = a^2</math>. Substituting and rearranging, we get <math>y^2 - 64*y + 24 = 0</math>. We reduced this problem to a quadratic equation! By the quadratic formula, our solutions are <math>y = 32 \pm 10*\sqrt{10}</math>. Now substitute back <math>y = a^2</math> to get <math>a = \pm \sqrt{32 \pm 10*\sqrt{10}}</math>. All 4 of these solutions are rational and will work. But our answer is actually <math>4 * 2 = 8</math> as we have only calculated the number of places where R could go above line segment PQ. We need to multiply our 4 by 2 to account for all the places R could go below segment PQ.
+
Let the brackets denote areas. We are given that <cmath>[PQR]=\frac12\cdot PQ\cdot h_R=12.</cmath> Since <math>PQ=8,</math> it follows that <math>h_R=3.</math>
~mewto
+
 
 +
Without the loss of generality, let <math>P=(-4,0)</math> and <math>Q=(4,0).</math> We conclude that the <math>y</math>-coordinate of <math>R</math> must be <math>\pm3.</math>
 +
 
 +
We apply casework to the right angle of <math>\triangle PQR:</math>
 +
<ol style="margin-left: 1.5em;">
 +
  <li><math>\angle P=90^\circ.</math> <p>
 +
The <math>x</math>-coordinate of <math>R</math> must be <math>-4,</math> so we have <math>R=(-4,\pm3).</math> <p>
 +
<b>In this case, there are <math>\boldsymbol{2}</math> such locations for <math>\boldsymbol{R.}</math></b> <p></li>
 +
  <li><math>\angle Q=90^\circ.</math> <p>
 +
The <math>x</math>-coordinate of <math>R</math> must be <math>4,</math> so we have <math>R=(4,\pm3).</math> <p>
 +
<b>In this case, there are <math>\boldsymbol{2}</math> such locations for <math>\boldsymbol{R.}</math></b> <p></li>
 +
  <li><math>\angle R=90^\circ.</math> <p>
 +
For <math>R=(x,3),</math> the Pythagorean Theorem <math>PR^2+QR^2=PQ^2</math> gives <cmath>\left[(x+4)^2+3^2\right]+\left[(x-4)^2+3^2\right]=8^2.</cmath> Solving this equation, we have <math>x=\pm\sqrt7,</math> or <math>R=\left(\pm\sqrt7,3\right).</math> <p>
 +
For <math>R=(x,-3),</math> we have <math>R=\left(\pm\sqrt7,-3\right)</math> by a similar process. <p>
 +
<b>In this case, there are <math>\boldsymbol{4}</math> such locations for <math>\boldsymbol{R.}</math></b> <p></li>
 +
</ol>
 +
Together, there are <math>2+2+4=\boxed{\textbf{(D)}\ 8}</math> such locations for <math>R.</math>
 +
 
 +
~MRENTHUSIASM ~mewto
 +
 
 +
==Video Solution (HOW TO CRITICALLY THINK!!!)==
 +
https://youtu.be/C_9Wa_owu9s
 +
 
 +
~Education, the Study of Everything
  
 
==Video Solution==
 
==Video Solution==
 
https://youtu.be/OHR_6U686Qg
 
https://youtu.be/OHR_6U686Qg
 
~IceMatrix
 
  
 
https://youtu.be/cUzK5DqKaRY
 
https://youtu.be/cUzK5DqKaRY
  
 
~savannahsolver
 
~savannahsolver
 +
 +
== Video Solution by Sohil Rathi==
 +
https://youtu.be/GrCtzL0S-Uo?t=19
  
 
== See Also ==
 
== See Also ==

Latest revision as of 14:00, 12 July 2024

Problem

Points $P$ and $Q$ lie in a plane with $PQ=8$. How many locations for point $R$ in this plane are there such that the triangle with vertices $P$, $Q$, and $R$ is a right triangle with area $12$ square units?

$\textbf{(A)}\ 2 \qquad\textbf{(B)}\ 4 \qquad\textbf{(C)}\  6 \qquad\textbf{(D)}\ 8 \qquad\textbf{(E)}\ 12$

Solution 1 (Geometry)

Let the brackets denote areas. We are given that \[[PQR]=\frac12\cdot PQ\cdot h_R=12.\] Since $PQ=8,$ it follows that $h_R=3.$

We construct a circle with diameter $\overline{PQ}.$ All such locations for $R$ are shown below:

[asy] /* Made by MRENTHUSIASM */ size(250); pair O, P, Q, R1, R2, R3, R4, R5, R6, R7, R8, I1, I2; O = (0,0); P = (-4,0); Q = (4,0); R1 = (-4,3); R4 = (4,3); R5 = (-4,-3); R8 = (4,-3); path C; C = Circle(O,4); R3 = intersectionpoints(C,R1--R4)[0]; R2 = intersectionpoints(C,R1--R4)[1]; R6 = intersectionpoints(C,R5--R8)[0]; R7 = intersectionpoints(C,R5--R8)[1]; I1 = intersectionpoint(R2--R6,P--Q); I2 = intersectionpoint(R3--R7,P--Q); markscalefactor=0.0375; draw(rightanglemark(R1,P,Q)^^rightanglemark(R2,I1,Q)^^rightanglemark(R3,I2,P)^^rightanglemark(R4,Q,P),red); draw(Circle(O,4),dashed); draw(R1--R5^^R4--R8^^R2--R6^^R3--R7^^P--Q); dot(O,linewidth(4)); dot("$P$",P,1.5W,linewidth(4)); dot("$Q$",Q,1.5E,linewidth(4)); dot("$R_1$",R1,1.5NW,blue+linewidth(4)); dot("$R_4$",R4,1.5NE,blue+linewidth(4)); dot("$R_5$",R5,1.5SW,blue+linewidth(4)); dot("$R_8$",R8,1.5SE,blue+linewidth(4)); dot("$R_2$",R2,1.5NW,blue+linewidth(4)); dot("$R_3$",R3,1.5NE,blue+linewidth(4)); dot("$R_6$",R6,1.5SW,blue+linewidth(4)); dot("$R_7$",R7,1.5SE,blue+linewidth(4)); dot(I1,linewidth(4)); dot(I2,linewidth(4)); Label L1 = Label("$8$", align=(0,0), position=MidPoint, filltype=Fill(3,0,white)); Label L2 = Label("$3$", align=(0,0), position=MidPoint, filltype=Fill(0,3,white)); draw(P-(0,5)--Q-(0,5), L=L1, arrow=Arrows(),bar=Bars(15)); draw(R4+(2,0)--Q+(2,0), L=L2, arrow=Arrows(),bar=Bars(15)); draw(Q+(2,0)--R8+(2,0), L=L2, arrow=Arrows(),bar=Bars(15)); [/asy]

We apply casework to the right angle of $\triangle PQR:$

  1. If $\angle P=90^\circ,$ then $R\in\{R_1,R_5\}$ by the tangent.
  2. If $\angle Q=90^\circ,$ then $R\in\{R_4,R_8\}$ by the tangent.
  3. If $\angle R=90^\circ,$ then $R\in\{R_2,R_3,R_6,R_7\}$ by the Inscribed Angle Theorem.

Together, there are $\boxed{\textbf{(D)}\ 8}$ such locations for $R.$

Remarks

  1. The reflections of $R_1,R_2,R_3,R_4$ about $\overleftrightarrow{PQ}$ are $R_5,R_6,R_7,R_8,$ respectively.
  2. The reflections of $R_1,R_2,R_5,R_6$ about the perpendicular bisector of $\overline{PQ}$ are $R_4,R_3,R_8,R_7,$ respectively.

~MRENTHUSIASM

Solution 2 (Algebra)

Let the brackets denote areas. We are given that \[[PQR]=\frac12\cdot PQ\cdot h_R=12.\] Since $PQ=8,$ it follows that $h_R=3.$

Without the loss of generality, let $P=(-4,0)$ and $Q=(4,0).$ We conclude that the $y$-coordinate of $R$ must be $\pm3.$

We apply casework to the right angle of $\triangle PQR:$

  1. $\angle P=90^\circ.$

    The $x$-coordinate of $R$ must be $-4,$ so we have $R=(-4,\pm3).$

    In this case, there are $\boldsymbol{2}$ such locations for $\boldsymbol{R.}$

  2. $\angle Q=90^\circ.$

    The $x$-coordinate of $R$ must be $4,$ so we have $R=(4,\pm3).$

    In this case, there are $\boldsymbol{2}$ such locations for $\boldsymbol{R.}$

  3. $\angle R=90^\circ.$

    For $R=(x,3),$ the Pythagorean Theorem $PR^2+QR^2=PQ^2$ gives \[\left[(x+4)^2+3^2\right]+\left[(x-4)^2+3^2\right]=8^2.\] Solving this equation, we have $x=\pm\sqrt7,$ or $R=\left(\pm\sqrt7,3\right).$

    For $R=(x,-3),$ we have $R=\left(\pm\sqrt7,-3\right)$ by a similar process.

    In this case, there are $\boldsymbol{4}$ such locations for $\boldsymbol{R.}$

Together, there are $2+2+4=\boxed{\textbf{(D)}\ 8}$ such locations for $R.$

~MRENTHUSIASM ~mewto

Video Solution (HOW TO CRITICALLY THINK!!!)

https://youtu.be/C_9Wa_owu9s

~Education, the Study of Everything

Video Solution

https://youtu.be/OHR_6U686Qg

https://youtu.be/cUzK5DqKaRY

~savannahsolver

Video Solution by Sohil Rathi

https://youtu.be/GrCtzL0S-Uo?t=19

See Also

2020 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png