Difference between revisions of "2020 AMC 10B Problems/Problem 8"
MRENTHUSIASM (talk | contribs) (→Solution 4 (Algebra)) |
(→Video Solution) |
||
(12 intermediate revisions by 5 users not shown) | |||
Line 9: | Line 9: | ||
We construct a circle with diameter <math>\overline{PQ}.</math> All such locations for <math>R</math> are shown below: | We construct a circle with diameter <math>\overline{PQ}.</math> All such locations for <math>R</math> are shown below: | ||
+ | |||
<asy> | <asy> | ||
/* Made by MRENTHUSIASM */ | /* Made by MRENTHUSIASM */ | ||
Line 45: | Line 46: | ||
dot(I1,linewidth(4)); | dot(I1,linewidth(4)); | ||
dot(I2,linewidth(4)); | dot(I2,linewidth(4)); | ||
− | + | Label L1 = Label("$8$", align=(0,0), position=MidPoint, filltype=Fill(3,0,white)); | |
− | Label L1 = Label("$8$", align=(0,0), position=MidPoint, filltype=Fill(white)); | + | Label L2 = Label("$3$", align=(0,0), position=MidPoint, filltype=Fill(0,3,white)); |
− | Label L2 = Label("$3$", align=(0,0), position=MidPoint, filltype=Fill(white)); | ||
draw(P-(0,5)--Q-(0,5), L=L1, arrow=Arrows(),bar=Bars(15)); | draw(P-(0,5)--Q-(0,5), L=L1, arrow=Arrows(),bar=Bars(15)); | ||
draw(R4+(2,0)--Q+(2,0), L=L2, arrow=Arrows(),bar=Bars(15)); | draw(R4+(2,0)--Q+(2,0), L=L2, arrow=Arrows(),bar=Bars(15)); | ||
draw(Q+(2,0)--R8+(2,0), L=L2, arrow=Arrows(),bar=Bars(15)); | draw(Q+(2,0)--R8+(2,0), L=L2, arrow=Arrows(),bar=Bars(15)); | ||
</asy> | </asy> | ||
+ | |||
We apply casework to the right angle of <math>\triangle PQR:</math> | We apply casework to the right angle of <math>\triangle PQR:</math> | ||
<ol style="margin-left: 1.5em;"> | <ol style="margin-left: 1.5em;"> | ||
Line 67: | Line 68: | ||
~MRENTHUSIASM | ~MRENTHUSIASM | ||
− | ==Solution | + | ==Solution 2 (Algebra)== |
− | Let | + | Let the brackets denote areas. We are given that <cmath>[PQR]=\frac12\cdot PQ\cdot h_R=12.</cmath> Since <math>PQ=8,</math> it follows that <math>h_R=3.</math> |
− | + | Without the loss of generality, let <math>P=(-4,0)</math> and <math>Q=(4,0).</math> We conclude that the <math>y</math>-coordinate of <math>R</math> must be <math>\pm3.</math> | |
− | |||
− | |||
− | |||
− | We | ||
− | |||
− | |||
+ | We apply casework to the right angle of <math>\triangle PQR:</math> | ||
+ | <ol style="margin-left: 1.5em;"> | ||
+ | <li><math>\angle P=90^\circ.</math> <p> | ||
+ | The <math>x</math>-coordinate of <math>R</math> must be <math>-4,</math> so we have <math>R=(-4,\pm3).</math> <p> | ||
+ | <b>In this case, there are <math>\boldsymbol{2}</math> such locations for <math>\boldsymbol{R.}</math></b> <p></li> | ||
+ | <li><math>\angle Q=90^\circ.</math> <p> | ||
+ | The <math>x</math>-coordinate of <math>R</math> must be <math>4,</math> so we have <math>R=(4,\pm3).</math> <p> | ||
+ | <b>In this case, there are <math>\boldsymbol{2}</math> such locations for <math>\boldsymbol{R.}</math></b> <p></li> | ||
+ | <li><math>\angle R=90^\circ.</math> <p> | ||
+ | For <math>R=(x,3),</math> the Pythagorean Theorem <math>PR^2+QR^2=PQ^2</math> gives <cmath>\left[(x+4)^2+3^2\right]+\left[(x-4)^2+3^2\right]=8^2.</cmath> Solving this equation, we have <math>x=\pm\sqrt7,</math> or <math>R=\left(\pm\sqrt7,3\right).</math> <p> | ||
+ | For <math>R=(x,-3),</math> we have <math>R=\left(\pm\sqrt7,-3\right)</math> by a similar process. <p> | ||
+ | <b>In this case, there are <math>\boldsymbol{4}</math> such locations for <math>\boldsymbol{R.}</math></b> <p></li> | ||
+ | </ol> | ||
+ | Together, there are <math>2+2+4=\boxed{\textbf{(D)}\ 8}</math> such locations for <math>R.</math> | ||
+ | ~MRENTHUSIASM ~mewto | ||
+ | ==Video Solution (HOW TO CRITICALLY THINK!!!)== | ||
+ | https://youtu.be/C_9Wa_owu9s | ||
− | + | ~Education, the Study of Everything | |
==Video Solution== | ==Video Solution== | ||
https://youtu.be/OHR_6U686Qg | https://youtu.be/OHR_6U686Qg | ||
− | |||
− | |||
https://youtu.be/cUzK5DqKaRY | https://youtu.be/cUzK5DqKaRY | ||
~savannahsolver | ~savannahsolver | ||
+ | |||
+ | == Video Solution by Sohil Rathi== | ||
+ | https://youtu.be/GrCtzL0S-Uo?t=19 | ||
== See Also == | == See Also == |
Latest revision as of 14:00, 12 July 2024
Contents
Problem
Points and lie in a plane with . How many locations for point in this plane are there such that the triangle with vertices , , and is a right triangle with area square units?
Solution 1 (Geometry)
Let the brackets denote areas. We are given that Since it follows that
We construct a circle with diameter All such locations for are shown below:
We apply casework to the right angle of
- If then by the tangent.
- If then by the tangent.
- If then by the Inscribed Angle Theorem.
Together, there are such locations for
Remarks
- The reflections of about are respectively.
- The reflections of about the perpendicular bisector of are respectively.
~MRENTHUSIASM
Solution 2 (Algebra)
Let the brackets denote areas. We are given that Since it follows that
Without the loss of generality, let and We conclude that the -coordinate of must be
We apply casework to the right angle of
-
The -coordinate of must be so we have
In this case, there are such locations for
-
The -coordinate of must be so we have
In this case, there are such locations for
-
For the Pythagorean Theorem gives Solving this equation, we have or
For we have by a similar process.
In this case, there are such locations for
Together, there are such locations for
~MRENTHUSIASM ~mewto
Video Solution (HOW TO CRITICALLY THINK!!!)
~Education, the Study of Everything
Video Solution
~savannahsolver
Video Solution by Sohil Rathi
https://youtu.be/GrCtzL0S-Uo?t=19
See Also
2020 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 7 |
Followed by Problem 9 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.