Difference between revisions of "1957 AHSME Problems/Problem 48"

(Created page with "== Problem== Let <math>ABC</math> be an equilateral triangle inscribed in circle <math>O</math>. <math>M</math> is a point on arc <math>BC</math>. Lines <math>\overline{AM}...")
 
m (added link)
 
(2 intermediate revisions by 2 users not shown)
Line 31: Line 31:
 
==Solution==
 
==Solution==
  
Since quadrilateral <math>ABMC</math> is inscribed in circle <math>O</math>, thus it is a cyclic quadrilateral. By Ptolemy's Theorem, <cmath>AC \cdot MB + MC \cdot AB = MC \cdot AM.</cmath> Because <math>\triangle ABC</math> is equilateral, we cancel out <math>AB</math>, <math>AC</math>, and <math>BC</math> to get that <cmath>BM + CM = AM \implies \boxed{\textbf{(A)}}.</cmath>
+
Since quadrilateral <math>ABMC</math> is inscribed in circle <math>O</math>, thus it is a cyclic quadrilateral. By [[Ptolemy's Theorem]], <cmath>AC \cdot MB + MC \cdot AB = BC \cdot AM.</cmath> Because <math>\triangle ABC</math> is equilateral, we cancel out <math>AB</math>, <math>AC</math>, and <math>BC</math> to get that <cmath>BM + CM = AM \implies \boxed{\textbf{(A)}}.</cmath>
 +
 
 +
== See also ==
 +
 
 +
{{AHSME box|year=1957|num-b=47|num-a=49}}
 +
{{MAA Notice}}
 +
[[Category:AHSME]][[Category:AHSME Problems]]

Latest revision as of 12:49, 27 July 2024

Problem

Let $ABC$ be an equilateral triangle inscribed in circle $O$. $M$ is a point on arc $BC$. Lines $\overline{AM}$, $\overline{BM}$, and $\overline{CM}$ are drawn. Then $AM$ is:

[asy] defaultpen(linewidth(.8pt)); unitsize(2cm); pair O = origin; pair B = (1,0); pair C = dir(120); pair A = dir(240); pair M = dir(90 - 18); draw(Circle(O,1)); draw(A--C--M--B--cycle); draw(B--C); draw(A--M); dot(O); label("$A$",A,SW); label("$B$",B,E); label("$M$",M,NE); label("$C$",C,NW); label("$O$",O,SE);[/asy]

$\textbf{(A)}\ \text{equal to }{BM + CM}\qquad  \textbf{(B)}\ \text{less than }{BM + CM}\qquad \\ \textbf{(C)}\ \text{greater than }{BM+CM}\qquad \\ \textbf{(D)}\ \text{equal, less than, or greater than }{BM + CM}\text{, depending upon the position of } {M}\qquad  \\ \textbf{(E)}\ \text{none of these}$

Solution

Since quadrilateral $ABMC$ is inscribed in circle $O$, thus it is a cyclic quadrilateral. By Ptolemy's Theorem, \[AC \cdot MB + MC \cdot AB = BC \cdot AM.\] Because $\triangle ABC$ is equilateral, we cancel out $AB$, $AC$, and $BC$ to get that \[BM + CM = AM \implies \boxed{\textbf{(A)}}.\]

See also

1957 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 47
Followed by
Problem 49
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png