GET READY FOR THE AMC 12 WITH AoPS
Learn with outstanding instructors and top-scoring students from around the world in our AMC 12 Problem Series online course.
CHECK SCHEDULE

Difference between revisions of "2021 Fall AMC 12A Problems"

(Problem 19)
m (Problem 22)
 
(34 intermediate revisions by 7 users not shown)
Line 21: Line 21:
 
  5 \frac{1}{2} \qquad\textbf{(E)}\ 6 \frac{3}{4}</math>
 
  5 \frac{1}{2} \qquad\textbf{(E)}\ 6 \frac{3}{4}</math>
  
[[2021 Fall AMC 12A Problems/Problem 4|Solution]]
+
[[2021 Fall AMC 12A Problems/Problem 3|Solution]]
  
 
==Problem 4==
 
==Problem 4==
Line 28: Line 28:
 
<math>(\textbf{A})\: 1\qquad(\textbf{B}) \: 3\qquad(\textbf{C}) \: 5 \qquad(\textbf{D}) \: 7\qquad(\textbf{E}) \: 9</math>
 
<math>(\textbf{A})\: 1\qquad(\textbf{B}) \: 3\qquad(\textbf{C}) \: 5 \qquad(\textbf{D}) \: 7\qquad(\textbf{E}) \: 9</math>
  
[[2021 Fall AMC 12A Problems/Problem 5|Solution]]
+
[[2021 Fall AMC 12A Problems/Problem 4|Solution]]
  
 
==Problem 5==
 
==Problem 5==
Line 36: Line 36:
 
<math>\textbf{(A) }6\qquad\textbf{(B) }8\qquad\textbf{(C) }10\qquad\textbf{(D) }11\qquad\textbf{(E) }15</math>
 
<math>\textbf{(A) }6\qquad\textbf{(B) }8\qquad\textbf{(C) }10\qquad\textbf{(D) }11\qquad\textbf{(E) }15</math>
  
[[2021 Fall AMC 12A Problems/Problem 6|Solution]]
+
[[2021 Fall AMC 12A Problems/Problem 5|Solution]]
  
 
==Problem 6==
 
==Problem 6==
Line 43: Line 43:
  
 
<asy>
 
<asy>
usepackage("mathptmx");
 
 
size(6cm);
 
size(6cm);
 
pair A = (0,10);
 
pair A = (0,10);
Line 66: Line 65:
 
<math>\textbf{(A) }160\qquad\textbf{(B) }164\qquad\textbf{(C) }166\qquad\textbf{(D) }170\qquad\textbf{(E) }174</math>
 
<math>\textbf{(A) }160\qquad\textbf{(B) }164\qquad\textbf{(C) }166\qquad\textbf{(D) }170\qquad\textbf{(E) }174</math>
  
[[2021 Fall AMC 12A Problems/Problem 7|Solution]]
+
[[2021 Fall AMC 12A Problems/Problem 6|Solution]]
  
 
==Problem 7==
 
==Problem 7==
Line 72: Line 71:
 
A school has <math>100</math> students and <math>5</math> teachers. In the first period, each student is taking one class, and each teacher is teaching one class. The enrollments in the classes are <math>50, 20, 20, 5, </math> and <math>5</math>. Let <math>t</math> be the average value obtained if a teacher is picked at random and the number of students in their class is noted. Let <math>s</math> be the average value obtained if a student was picked at random and the number of students in their class, including the student, is noted. What is <math>t-s</math>?
 
A school has <math>100</math> students and <math>5</math> teachers. In the first period, each student is taking one class, and each teacher is teaching one class. The enrollments in the classes are <math>50, 20, 20, 5, </math> and <math>5</math>. Let <math>t</math> be the average value obtained if a teacher is picked at random and the number of students in their class is noted. Let <math>s</math> be the average value obtained if a student was picked at random and the number of students in their class, including the student, is noted. What is <math>t-s</math>?
  
<math>\textbf{(A)}\ {-}18.5  \qquad\textbf{(B)}\ {-}13.5 \qquad\textbf{(C)}\ 0 \qquad\textbf{(D)}\
+
<math>\textbf{(A)}\ {-}18.5  \qquad\textbf{(B)}\ {-}13.5 \qquad\textbf{(C)}\ 0 \qquad\textbf{(D)}\ 13.5 \qquad\textbf{(E)}\ 18.5</math>
13.5 \qquad\textbf{(E)}\ 18.5</math>
 
  
[[2021 Fall AMC 12A Problems/Problem 10|Solution]]
+
[[2021 Fall AMC 12A Problems/Problem 7|Solution]]
  
 
==Problem 8==
 
==Problem 8==
Line 108: Line 106:
 
==Problem 12==
 
==Problem 12==
  
What is the number of terms with rational coefficients among the <math>1001</math> terms in the expansion of <math>(x\sqrt[3]{2}+y\sqrt{3})^{1000}?</math>
+
What is the number of terms with rational coefficients among the <math>1001</math> terms in the expansion of <math>\left(x\sqrt[3]{2}+y\sqrt{3}\right)^{1000}?</math>
  
 
<math>\textbf{(A)}\ 0 \qquad\textbf{(B)}\ 166 \qquad\textbf{(C)}\ 167 \qquad\textbf{(D)}\ 500 \qquad\textbf{(E)}\ 501</math>
 
<math>\textbf{(A)}\ 0 \qquad\textbf{(B)}\ 166 \qquad\textbf{(C)}\ 167 \qquad\textbf{(D)}\ 500 \qquad\textbf{(E)}\ 501</math>
Line 115: Line 113:
  
 
==Problem 13==
 
==Problem 13==
Each of <math>6</math> balls is randomly and independently painted either black or white with equal probability. What is the probability that every ball is different in color from more than half of the other <math>5</math> balls?
+
The angle bisector of the acute angle formed at the origin by the graphs of the lines <math>y = x</math> and <math>y=3x</math> has equation <math>y=kx.</math> What is <math>k?</math>
  
<math>\textbf{(A) } \frac{1}{64}\qquad\textbf{(B) } \frac{1}{6}\qquad\textbf{(C) } \frac{1}{4}\qquad\textbf{(D) } \frac{5}{16}\qquad\textbf{(E) }\frac{1}{2}</math>
+
<math>\textbf{(A)} \ \frac{1+\sqrt{5}}{2} \qquad \textbf{(B)} \ \frac{1+\sqrt{7}}{2} \qquad \textbf{(C)} \ \frac{2+\sqrt{3}}{2} \qquad \textbf{(D)} \ 2\qquad \textbf{(E)} \ \frac{2+\sqrt{5}}{2}</math>
  
 
[[2021 Fall AMC 12A Problems/Problem 13|Solution]]
 
[[2021 Fall AMC 12A Problems/Problem 13|Solution]]
  
 
==Problem 14==
 
==Problem 14==
<math>\textbf{(A) } \qquad\textbf{(B) } \qquad\textbf{(C) } \qquad\textbf{(D) } \qquad\textbf{(E) }</math>
+
In the figure, equilateral hexagon <math>ABCDEF</math> has three nonadjacent acute interior angles that each measure <math>30^\circ</math>. The enclosed area of the hexagon is <math>6\sqrt{3}</math>. What is the perimeter of the hexagon?
 +
<asy>
 +
size(10cm);
 +
pen p=black+linewidth(1),q=black+linewidth(5);
 +
pair C=(0,0),D=(cos(pi/12),sin(pi/12)),E=rotate(150,D)*C,F=rotate(-30,E)*D,A=rotate(150,F)*E,B=rotate(-30,A)*F;
 +
draw(C--D--E--F--A--B--cycle,p);
 +
dot(A,q);
 +
dot(B,q);
 +
dot(C,q);
 +
dot(D,q);
 +
dot(E,q);
 +
dot(F,q);
 +
label("$C$",C,2*S);
 +
label("$D$",D,2*S);
 +
label("$E$",E,2*S);
 +
label("$F$",F,2*dir(0));
 +
label("$A$",A,2*N);
 +
label("$B$",B,2*W);
 +
</asy>
 +
<math>\textbf{(A)} \: 4 \qquad \textbf{(B)} \: 4\sqrt3 \qquad \textbf{(C)} \: 12 \qquad \textbf{(D)} \: 18 \qquad \textbf{(E)} \: 12\sqrt3</math>
  
 
[[2021 Fall AMC 12A Problems/Problem 14|Solution]]
 
[[2021 Fall AMC 12A Problems/Problem 14|Solution]]
  
 
==Problem 15==
 
==Problem 15==
 +
Recall that the conjugate of the complex number <math>w = a + bi</math>, where <math>a</math> and <math>b</math> are real numbers and <math>i = \sqrt{-1}</math>, is the complex number <math>\overline{w} = a - bi</math>. For any complex number <math>z</math>, let <math>f(z) = 4i\hspace{1pt}\overline{z}</math>. The polynomial <cmath>P(z) = z^4 + 4z^3 + 3z^2 + 2z + 1</cmath> has four complex roots: <math>z_1</math>, <math>z_2</math>, <math>z_3</math>, and <math>z_4</math>. Let <cmath>Q(z) = z^4 + Az^3 + Bz^2 + Cz + D</cmath> be the polynomial whose roots are <math>f(z_1)</math>, <math>f(z_2)</math>, <math>f(z_3)</math>, and <math>f(z_4)</math>, where the coefficients <math>A,</math> <math>B,</math> <math>C,</math> and <math>D</math> are complex numbers. What is <math>B + D?</math>
  
 +
<math>(\textbf{A})\: {-}304\qquad(\textbf{B}) \: {-}208\qquad(\textbf{C}) \: 12i\qquad(\textbf{D}) \: 208\qquad(\textbf{E}) \: 304</math>
  
 
[[2021 Fall AMC 12A Problems/Problem 15|Solution]]
 
[[2021 Fall AMC 12A Problems/Problem 15|Solution]]
  
 
==Problem 16==
 
==Problem 16==
 +
An organization has <math>30</math> employees, <math>20</math> of whom have a brand A computer while the other <math>10</math> have a brand B computer. For security, the computers can only be connected to each other and only by cables. The cables can only connect a brand A computer to a brand B computer. Employees can communicate with each other if their computers are directly connected by a cable or by relaying messages through a series of connected computers. Initially, no computer is connected to any other. A technician arbitrarily selects one computer of each brand and installs a cable between them, provided there is not already a cable between that pair. The technician stops once every employee can communicate with each other. What is the maximum possible number of cables used?
  
 +
<math>\textbf{(A)}\ 190  \qquad\textbf{(B)}\  191 \qquad\textbf{(C)}\  192 \qquad\textbf{(D)}\
 +
195 \qquad\textbf{(E)}\ 196</math>
  
 
[[2021 Fall AMC 12A Problems/Problem 16|Solution]]
 
[[2021 Fall AMC 12A Problems/Problem 16|Solution]]
Line 151: Line 173:
  
 
==Problem 19==
 
==Problem 19==
Let <math>x</math> be the least real number greater than <math>1</math> such that sin<math>(x)</math> = sin<math>(x^2)</math>, where the arguments are in degrees. What is <math>x</math> rounded up to the closest integer?
+
Let <math>x</math> be the least real number greater than <math>1</math> such that <math>\sin(x) = \sin(x^2)</math>, where the arguments are in degrees. What is <math>x</math> rounded up to the closest integer?
  
 
<math>\textbf{(A) } 10 \qquad \textbf{(B) } 13 \qquad \textbf{(C) } 14 \qquad \textbf{(D) } 19 \qquad \textbf{(E) } 20</math>
 
<math>\textbf{(A) } 10 \qquad \textbf{(B) } 13 \qquad \textbf{(C) } 14 \qquad \textbf{(D) } 19 \qquad \textbf{(E) } 20</math>
Line 165: Line 187:
  
 
==Problem 21==
 
==Problem 21==
 +
Let <math>ABCD</math> be an isosceles trapezoid with <math>\overline{BC} \parallel \overline{AD}</math> and <math>AB=CD</math>. Points <math>X</math> and <math>Y</math> lie on diagonal <math>\overline{AC}</math> with <math>X</math> between <math>A</math> and <math>Y</math>, as shown in the figure. Suppose <math>\angle AXD = \angle BYC = 90^\circ</math>, <math>AX = 3</math>, <math>XY = 1</math>, and <math>YC = 2</math>. What is the area of <math>ABCD</math>?
  
 +
<asy>
 +
size(10cm);
 +
usepackage("mathptmx");
 +
import geometry;
 +
void perp(picture pic=currentpicture,
 +
pair O, pair M, pair B, real size=5,
 +
pen p=currentpen, filltype filltype = NoFill){
 +
perpendicularmark(pic, M,unit(unit(O-M)+unit(B-M)),size,p,filltype);
 +
}
 +
pen p=black+linewidth(1),q=black+linewidth(5);
 +
pair C=(0,0),Y=(2,0),X=(3,0),A=(6,0),B=(2,sqrt(5.6)),D=(3,-sqrt(12.6));
 +
draw(A--B--C--D--cycle,p);
 +
draw(A--C,p);
 +
draw(B--Y,p);
 +
draw(D--X,p);
 +
dot(A,q);
 +
dot(B,q);
 +
dot(C,q);
 +
dot(D,q);
 +
dot(X,q);
 +
dot(Y,q);
 +
label("2",C--Y,S);
 +
label("1",Y--X,S);
 +
label("3",X--A,S);
 +
label("$A$",A,2*E);
 +
label("$B$",B,2*N);
 +
label("$C$",C,2*W);
 +
label("$D$",D,2*S);
 +
label("$Y$",Y,2*sqrt(2)*NE);
 +
label("$X$",X,2*N);
 +
perp(B,Y,C,8,p);
 +
perp(A,X,D,8,p);
 +
</asy>
 +
<math>\textbf{(A)}\: 15\qquad\textbf{(B)} \: 5\sqrt{11}\qquad\textbf{(C)} \: 3\sqrt{35}\qquad\textbf{(D)} \: 18\qquad\textbf{(E)} \: 7\sqrt{7}</math>
  
 
[[2021 Fall AMC 12A Problems/Problem 21|Solution]]
 
[[2021 Fall AMC 12A Problems/Problem 21|Solution]]
  
 
==Problem 22==
 
==Problem 22==
 +
Azar and Carl play a game of tic-tac-toe. Azar places an <math>X</math> in one of the boxes in a <math>3</math>-by-<math>3</math> array of boxes, then Carl places an <math>O</math> in one of the remaining boxes. After that, Azar places an <math>X</math> in one of the remaining boxes, and so on until all boxes are filled or one of the players has of their symbols in a row—horizontal, vertical, or diagonal—whichever comes first, in which case that player wins the game. Suppose the players make their moves at random, rather than trying to follow a rational strategy, and that Carl wins the game when he places his third <math>O</math>. How many ways can the board look after the game is over?
  
 +
<math>\textbf{(A) } 36 \qquad\textbf{(B) } 112 \qquad\textbf{(C) } 120 \qquad\textbf{(D) } 148 \qquad\textbf{(E) } 160</math>
  
 
[[2021 Fall AMC 12A Problems/Problem 22|Solution]]
 
[[2021 Fall AMC 12A Problems/Problem 22|Solution]]
Line 183: Line 242:
  
 
==Problem 24==
 
==Problem 24==
 +
Convex quadrilateral <math>ABCD</math> has <math>AB = 18, \angle{A} = 60^\circ,</math> and <math>\overline{AB} \parallel \overline{CD}.</math> In some order, the lengths of the four sides form an arithmetic progression, and side <math>\overline{AB}</math> is a side of maximum length. The length of another side is <math>a.</math> What is the sum of all possible values of <math>a</math>?
  
 +
<math>\textbf{(A) } 24 \qquad \textbf{(B) } 42 \qquad \textbf{(C) } 60 \qquad \textbf{(D) } 66 \qquad \textbf{(E) } 84</math>
  
 
[[2021 Fall AMC 12A Problems/Problem 24|Solution]]
 
[[2021 Fall AMC 12A Problems/Problem 24|Solution]]
  
 
==Problem 25==
 
==Problem 25==
 +
Let <math>m\ge 5</math> be an odd integer, and let <math>D(m)</math> denote the number of quadruples <math>(a_1, a_2, a_3, a_4)</math> of distinct integers with <math>1\le a_i \le m</math> for all <math>i</math> such that <math>m</math> divides <math>a_1+a_2+a_3+a_4</math>. There is a polynomial
 +
<cmath>q(x) = c_3x^3+c_2x^2+c_1x+c_0</cmath>such that <math>D(m) = q(m)</math> for all odd integers <math>m\ge 5</math>. What is <math>c_1?</math>
 +
 +
<math>\textbf{(A)}\ {-}6\qquad\textbf{(B)}\ {-}1\qquad\textbf{(C)}\ 4\qquad\textbf{(D)}\ 6\qquad\textbf{(E)}\ 11</math>
  
 
[[2021 Fall AMC 12A Problems/Problem 25|Solution]]
 
[[2021 Fall AMC 12A Problems/Problem 25|Solution]]
  
==See also==
+
==See Also==
 
{{AMC12 box|year=2021 Fall|ab=A|before=[[2021 AMC 12B Problems]]|after=[[2021 Fall AMC 12B Problems]]}}
 
{{AMC12 box|year=2021 Fall|ab=A|before=[[2021 AMC 12B Problems]]|after=[[2021 Fall AMC 12B Problems]]}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 07:55, 22 October 2024

2021 Fall AMC 12A (Answer Key)
Printable versions: WikiFall AoPS ResourcesFall PDF

Instructions

  1. This is a 25-question, multiple choice test. Each question is followed by answers marked A, B, C, D and E. Only one of these is correct.
  2. You will receive 6 points for each correct answer, 2.5 points for each problem left unanswered if the year is before 2006, 1.5 points for each problem left unanswered if the year is after 2006, and 0 points for each incorrect answer.
  3. No aids are permitted other than scratch paper, graph paper, ruler, compass, protractor and erasers (and calculators that are accepted for use on the test if before 2006. No problems on the test will require the use of a calculator).
  4. Figures are not necessarily drawn to scale.
  5. You will have 75 minutes working time to complete the test.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Problem 1

What is the value of $\frac{(2112-2021)^2}{169}$?

$\textbf{(A) } 7 \qquad\textbf{(B) } 21 \qquad\textbf{(C) } 49 \qquad\textbf{(D) } 64 \qquad\textbf{(E) } 91$

Solution

Problem 2

Menkara has a $4 \times 6$ index card. If she shortens the length of one side of this card by $1$ inch, the card would have area $18$ square inches. What would the area of the card be in square inches if instead she shortens the length of the other side by $1$ inch?

$\textbf{(A) }16\qquad\textbf{(B) }17\qquad\textbf{(C) }18\qquad\textbf{(D) }19\qquad\textbf{(E) }20$

Solution

Problem 3

Mr. Lopez has a choice of two routes to get to work. Route A is $6$ miles long, and his average speed along this route is $30$ miles per hour. Route B is $5$ miles long, and his average speed along this route is $40$ miles per hour, except for a $\frac{1}{2}$-mile stretch in a school zone where his average speed is $20$ miles per hour. By how many minutes is Route B quicker than Route A?

$\textbf{(A)}\ 2 \frac{3}{4}  \qquad\textbf{(B)}\  3 \frac{3}{4} \qquad\textbf{(C)}\  4 \frac{1}{2} \qquad\textbf{(D)}\  5 \frac{1}{2} \qquad\textbf{(E)}\ 6 \frac{3}{4}$

Solution

Problem 4

The six-digit number $\underline{2}\,\underline{0}\,\underline{2}\,\underline{1}\,\underline{0}\,\underline{A}$ is prime for only one digit $A.$ What is $A?$

$(\textbf{A})\: 1\qquad(\textbf{B}) \: 3\qquad(\textbf{C}) \: 5 \qquad(\textbf{D}) \: 7\qquad(\textbf{E}) \: 9$

Solution

Problem 5

Elmer the emu takes $44$ equal strides to walk between consecutive telephone poles on a rural road. Oscar the ostrich can cover the same distance in $12$ equal leaps. The telephone poles are evenly spaced, and the $41$st pole along this road is exactly one mile ($5280$ feet) from the first pole. How much longer, in feet, is Oscar's leap than Elmer's stride?

$\textbf{(A) }6\qquad\textbf{(B) }8\qquad\textbf{(C) }10\qquad\textbf{(D) }11\qquad\textbf{(E) }15$

Solution

Problem 6

As shown in the figure below, point $E$ lies on the opposite half-plane determined by line $CD$ from point $A$ so that $\angle CDE = 110^\circ$. Point $F$ lies on $\overline{AD}$ so that $DE=DF$, and $ABCD$ is a square. What is the degree measure of $\angle AFE$?

[asy] size(6cm); pair A = (0,10); label("$A$", A, N); pair B = (0,0); label("$B$", B, S); pair C = (10,0); label("$C$", C, S); pair D = (10,10); label("$D$", D, SW); pair EE = (15,11.8); label("$E$", EE, N); pair F = (3,10); label("$F$", F, N); filldraw(D--arc(D,2.5,270,380)--cycle,lightgray); dot(A^^B^^C^^D^^EE^^F); draw(A--B--C--D--cycle); draw(D--EE--F--cycle); label("$110^\circ$", (15,9), SW); [/asy]

$\textbf{(A) }160\qquad\textbf{(B) }164\qquad\textbf{(C) }166\qquad\textbf{(D) }170\qquad\textbf{(E) }174$

Solution

Problem 7

A school has $100$ students and $5$ teachers. In the first period, each student is taking one class, and each teacher is teaching one class. The enrollments in the classes are $50, 20, 20, 5,$ and $5$. Let $t$ be the average value obtained if a teacher is picked at random and the number of students in their class is noted. Let $s$ be the average value obtained if a student was picked at random and the number of students in their class, including the student, is noted. What is $t-s$?

$\textbf{(A)}\ {-}18.5  \qquad\textbf{(B)}\ {-}13.5 \qquad\textbf{(C)}\ 0 \qquad\textbf{(D)}\ 13.5 \qquad\textbf{(E)}\ 18.5$

Solution

Problem 8

Let $M$ be the least common multiple of all the integers $10$ through $30,$ inclusive. Let $N$ be the least common multiple of $M,32,33,34,35,36,37,38,39,$ and $40.$ What is the value of $\frac{N}{M}?$

$\textbf{(A)}\ 1 \qquad\textbf{(B)}\ 2 \qquad\textbf{(C)}\ 37 \qquad\textbf{(D)}\ 74 \qquad\textbf{(E)}\ 2886$

Solution

Problem 9

A right rectangular prism whose surface area and volume are numerically equal has edge lengths $\log_{2}x, \log_{3}x,$ and $\log_{4}x.$ What is $x?$

$\textbf{(A)}\ 2\sqrt{6} \qquad\textbf{(B)}\ 6\sqrt{6} \qquad\textbf{(C)}\ 24 \qquad\textbf{(D)}\ 48 \qquad\textbf{(E)}\ 576$

Solution

Problem 10

The base-nine representation of the number $N$ is $27{,}006{,}000{,}052_{\text{nine}}.$ What is the remainder when $N$ is divided by $5?$

$\textbf{(A) } 0\qquad\textbf{(B) } 1\qquad\textbf{(C) } 2\qquad\textbf{(D) } 3\qquad\textbf{(E) }4$

Solution

Problem 11

Consider two concentric circles of radius $17$ and $19.$ The larger circle has a chord, half of which lies inside the smaller circle. What is the length of the chord in the larger circle?

$\textbf{(A)}\ 12\sqrt{2} \qquad\textbf{(B)}\ 10\sqrt{3} \qquad\textbf{(C)}\ \sqrt{17 \cdot 19} \qquad\textbf{(D)}\ 18 \qquad\textbf{(E)}\ 8\sqrt{6}$

Solution

Problem 12

What is the number of terms with rational coefficients among the $1001$ terms in the expansion of $\left(x\sqrt[3]{2}+y\sqrt{3}\right)^{1000}?$

$\textbf{(A)}\ 0 \qquad\textbf{(B)}\ 166 \qquad\textbf{(C)}\ 167 \qquad\textbf{(D)}\ 500 \qquad\textbf{(E)}\ 501$

Solution

Problem 13

The angle bisector of the acute angle formed at the origin by the graphs of the lines $y = x$ and $y=3x$ has equation $y=kx.$ What is $k?$

$\textbf{(A)} \ \frac{1+\sqrt{5}}{2} \qquad \textbf{(B)} \ \frac{1+\sqrt{7}}{2} \qquad \textbf{(C)} \ \frac{2+\sqrt{3}}{2} \qquad \textbf{(D)} \ 2\qquad \textbf{(E)} \ \frac{2+\sqrt{5}}{2}$

Solution

Problem 14

In the figure, equilateral hexagon $ABCDEF$ has three nonadjacent acute interior angles that each measure $30^\circ$. The enclosed area of the hexagon is $6\sqrt{3}$. What is the perimeter of the hexagon? [asy] size(10cm); pen p=black+linewidth(1),q=black+linewidth(5); pair C=(0,0),D=(cos(pi/12),sin(pi/12)),E=rotate(150,D)*C,F=rotate(-30,E)*D,A=rotate(150,F)*E,B=rotate(-30,A)*F; draw(C--D--E--F--A--B--cycle,p); dot(A,q); dot(B,q); dot(C,q); dot(D,q); dot(E,q); dot(F,q); label("$C$",C,2*S); label("$D$",D,2*S); label("$E$",E,2*S); label("$F$",F,2*dir(0)); label("$A$",A,2*N); label("$B$",B,2*W); [/asy] $\textbf{(A)} \: 4 \qquad \textbf{(B)} \: 4\sqrt3 \qquad \textbf{(C)} \: 12 \qquad \textbf{(D)} \: 18 \qquad \textbf{(E)} \: 12\sqrt3$

Solution

Problem 15

Recall that the conjugate of the complex number $w = a + bi$, where $a$ and $b$ are real numbers and $i = \sqrt{-1}$, is the complex number $\overline{w} = a - bi$. For any complex number $z$, let $f(z) = 4i\hspace{1pt}\overline{z}$. The polynomial \[P(z) = z^4 + 4z^3 + 3z^2 + 2z + 1\] has four complex roots: $z_1$, $z_2$, $z_3$, and $z_4$. Let \[Q(z) = z^4 + Az^3 + Bz^2 + Cz + D\] be the polynomial whose roots are $f(z_1)$, $f(z_2)$, $f(z_3)$, and $f(z_4)$, where the coefficients $A,$ $B,$ $C,$ and $D$ are complex numbers. What is $B + D?$

$(\textbf{A})\: {-}304\qquad(\textbf{B}) \: {-}208\qquad(\textbf{C}) \: 12i\qquad(\textbf{D}) \: 208\qquad(\textbf{E}) \: 304$

Solution

Problem 16

An organization has $30$ employees, $20$ of whom have a brand A computer while the other $10$ have a brand B computer. For security, the computers can only be connected to each other and only by cables. The cables can only connect a brand A computer to a brand B computer. Employees can communicate with each other if their computers are directly connected by a cable or by relaying messages through a series of connected computers. Initially, no computer is connected to any other. A technician arbitrarily selects one computer of each brand and installs a cable between them, provided there is not already a cable between that pair. The technician stops once every employee can communicate with each other. What is the maximum possible number of cables used?

$\textbf{(A)}\ 190  \qquad\textbf{(B)}\  191 \qquad\textbf{(C)}\  192 \qquad\textbf{(D)}\  195 \qquad\textbf{(E)}\ 196$

Solution

Problem 17

For how many ordered pairs $(b,c)$ of positive integers does neither $x^2+bx+c=0$ nor $x^2+cx+b=0$ have two distinct real solutions?

$\textbf{(A) } 4 \qquad \textbf{(B) } 6 \qquad \textbf{(C) } 8 \qquad \textbf{(D) } 12 \qquad \textbf{(E) } 16 \qquad$

Solution

Problem 18

Each of $20$ balls is tossed independently and at random into one of $5$ bins. Let $p$ be the probability that some bin ends up with $3$ balls, another with $5$ balls, and the other three with $4$ balls each. Let $q$ be the probability that every bin ends up with $4$ balls. What is $\frac{p}{q}$?

$\textbf{(A)}\ 1 \qquad\textbf{(B)}\  4 \qquad\textbf{(C)}\  8 \qquad\textbf{(D)}\  12 \qquad\textbf{(E)}\ 16$

Solution

Problem 19

Let $x$ be the least real number greater than $1$ such that $\sin(x) = \sin(x^2)$, where the arguments are in degrees. What is $x$ rounded up to the closest integer?

$\textbf{(A) } 10 \qquad \textbf{(B) } 13 \qquad \textbf{(C) } 14 \qquad \textbf{(D) } 19 \qquad \textbf{(E) } 20$

Solution

Problem 20

For each positive integer $n$, let $f_1(n)$ be twice the number of positive integer divisors of $n$, and for $j \ge 2$, let $f_j(n) = f_1(f_{j-1}(n))$. For how many values of $n \le 50$ is $f_{50}(n) = 12?$

$\textbf{(A) }7\qquad\textbf{(B) }8\qquad\textbf{(C) }9\qquad\textbf{(D) }10\qquad\textbf{(E) }11$

Solution

Problem 21

Let $ABCD$ be an isosceles trapezoid with $\overline{BC} \parallel \overline{AD}$ and $AB=CD$. Points $X$ and $Y$ lie on diagonal $\overline{AC}$ with $X$ between $A$ and $Y$, as shown in the figure. Suppose $\angle AXD = \angle BYC = 90^\circ$, $AX = 3$, $XY = 1$, and $YC = 2$. What is the area of $ABCD$?

[asy] size(10cm); usepackage("mathptmx"); import geometry; void perp(picture pic=currentpicture, pair O, pair M, pair B, real size=5, pen p=currentpen, filltype filltype = NoFill){ perpendicularmark(pic, M,unit(unit(O-M)+unit(B-M)),size,p,filltype); } pen p=black+linewidth(1),q=black+linewidth(5); pair C=(0,0),Y=(2,0),X=(3,0),A=(6,0),B=(2,sqrt(5.6)),D=(3,-sqrt(12.6)); draw(A--B--C--D--cycle,p); draw(A--C,p); draw(B--Y,p); draw(D--X,p); dot(A,q); dot(B,q); dot(C,q); dot(D,q); dot(X,q); dot(Y,q); label("2",C--Y,S); label("1",Y--X,S); label("3",X--A,S); label("$A$",A,2*E); label("$B$",B,2*N); label("$C$",C,2*W); label("$D$",D,2*S); label("$Y$",Y,2*sqrt(2)*NE); label("$X$",X,2*N); perp(B,Y,C,8,p); perp(A,X,D,8,p); [/asy] $\textbf{(A)}\: 15\qquad\textbf{(B)} \: 5\sqrt{11}\qquad\textbf{(C)} \: 3\sqrt{35}\qquad\textbf{(D)} \: 18\qquad\textbf{(E)} \: 7\sqrt{7}$

Solution

Problem 22

Azar and Carl play a game of tic-tac-toe. Azar places an $X$ in one of the boxes in a $3$-by-$3$ array of boxes, then Carl places an $O$ in one of the remaining boxes. After that, Azar places an $X$ in one of the remaining boxes, and so on until all boxes are filled or one of the players has of their symbols in a row—horizontal, vertical, or diagonal—whichever comes first, in which case that player wins the game. Suppose the players make their moves at random, rather than trying to follow a rational strategy, and that Carl wins the game when he places his third $O$. How many ways can the board look after the game is over?

$\textbf{(A) } 36 \qquad\textbf{(B) } 112 \qquad\textbf{(C) } 120 \qquad\textbf{(D) } 148 \qquad\textbf{(E) } 160$

Solution

Problem 23

A quadratic polynomial with real coefficients and leading coefficient $1$ is called $\emph{disrespectful}$ if the equation $p(p(x))=0$ is satisfied by exactly three real numbers. Among all the disrespectful quadratic polynomials, there is a unique such polynomial $\tilde{p}(x)$ for which the sum of the roots is maximized. What is $\tilde{p}(1)$?

$\textbf{(A) } \frac{5}{16} \qquad\textbf{(B) } \frac{1}{2} \qquad\textbf{(C) } \frac{5}{8} \qquad\textbf{(D) } 1 \qquad\textbf{(E) } \frac{9}{8}$

Solution

Problem 24

Convex quadrilateral $ABCD$ has $AB = 18, \angle{A} = 60^\circ,$ and $\overline{AB} \parallel \overline{CD}.$ In some order, the lengths of the four sides form an arithmetic progression, and side $\overline{AB}$ is a side of maximum length. The length of another side is $a.$ What is the sum of all possible values of $a$?

$\textbf{(A) } 24 \qquad \textbf{(B) } 42 \qquad \textbf{(C) } 60 \qquad \textbf{(D) } 66 \qquad \textbf{(E) } 84$

Solution

Problem 25

Let $m\ge 5$ be an odd integer, and let $D(m)$ denote the number of quadruples $(a_1, a_2, a_3, a_4)$ of distinct integers with $1\le a_i \le m$ for all $i$ such that $m$ divides $a_1+a_2+a_3+a_4$. There is a polynomial \[q(x) = c_3x^3+c_2x^2+c_1x+c_0\]such that $D(m) = q(m)$ for all odd integers $m\ge 5$. What is $c_1?$

$\textbf{(A)}\ {-}6\qquad\textbf{(B)}\ {-}1\qquad\textbf{(C)}\ 4\qquad\textbf{(D)}\ 6\qquad\textbf{(E)}\ 11$

Solution

See Also

2021 Fall AMC 12A (ProblemsAnswer KeyResources)
Preceded by
2021 AMC 12B Problems
Followed by
2021 Fall AMC 12B Problems
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png