Difference between revisions of "2021 Fall AMC 12A Problems/Problem 9"
m |
|||
(3 intermediate revisions by 2 users not shown) | |||
Line 5: | Line 5: | ||
<math>\textbf{(A)}\ 2\sqrt{6} \qquad\textbf{(B)}\ 6\sqrt{6} \qquad\textbf{(C)}\ 24 \qquad\textbf{(D)}\ 48 \qquad\textbf{(E)}\ 576</math> | <math>\textbf{(A)}\ 2\sqrt{6} \qquad\textbf{(B)}\ 6\sqrt{6} \qquad\textbf{(C)}\ 24 \qquad\textbf{(D)}\ 48 \qquad\textbf{(E)}\ 576</math> | ||
− | ==Solution | + | ==Solution== |
The surface area of this right rectangular prism is <math>2(\log_{2}x\log_{3}x+\log_{2}x\log_{4}x+\log_{3}x\log_{4}x).</math> | The surface area of this right rectangular prism is <math>2(\log_{2}x\log_{3}x+\log_{2}x\log_{4}x+\log_{3}x\log_{4}x).</math> | ||
Line 21: | Line 21: | ||
~MRENTHUSIASM | ~MRENTHUSIASM | ||
− | == Solution | + | ==Video Solution by TheBeautyofMath== |
− | + | https://youtu.be/wlDlByKI7A8?t=649 | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
+ | ~IceMatrix | ||
==See Also== | ==See Also== | ||
{{AMC12 box|year=2021 Fall|ab=A|num-b=8|num-a=10}} | {{AMC12 box|year=2021 Fall|ab=A|num-b=8|num-a=10}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Latest revision as of 20:58, 7 April 2022
Problem
A right rectangular prism whose surface area and volume are numerically equal has edge lengths and What is
Solution
The surface area of this right rectangular prism is
The volume of this right rectangular prism is
Equating the numerical values of the surface area and the volume, we have Dividing both sides by we get Recall that and so we rewrite as ~MRENTHUSIASM
Video Solution by TheBeautyofMath
https://youtu.be/wlDlByKI7A8?t=649
~IceMatrix
See Also
2021 Fall AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 8 |
Followed by Problem 10 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.