Difference between revisions of "2015 AIME I Problems/Problem 13"
m (→Solution 6) |
m (→Solution 2: fixed a typo) |
||
(3 intermediate revisions by 3 users not shown) | |||
Line 99: | Line 99: | ||
~bluesoul | ~bluesoul | ||
+ | |||
+ | ==Solution 7== | ||
+ | |||
+ | We have | ||
+ | |||
+ | <cmath>\prod_{k=1}^{45} \csc^2(2k-1)^\circ = \left(\frac{1}{\sin1^\circ \cdot \sin3^\circ \cdots \sin89^\circ}\right)^2.</cmath> | ||
+ | |||
+ | Multiplying by <math>\frac{\sin2^\circ \cdot \sin4^\circ \cdots \sin88^\circ}{\sin2^\circ \cdot \sin4^\circ \cdots \sin88^\circ}</math> gives | ||
+ | |||
+ | <cmath>\left(\frac{\sin2^\circ \cdot \sin4^\circ \cdots \sin88^\circ}{\sin1^\circ \sin2^\circ \cdot \sin3^\circ \cdots \sin88^\circ \cdot \sin89^\circ}\right)^2</cmath> | ||
+ | |||
+ | <cmath> = \left(\frac{\sin2^\circ \cdot \sin4^\circ \cdots \sin88^\circ}{\sin1^\circ \sin2^\circ \cdot \sin3^\circ \cdots \sin 45^\circ \cdot \cos 44^\circ \cdot \cos 43^\circ \cdots \cos1^\circ}\right)^2.</cmath> | ||
+ | |||
+ | Using <math>\sin\alpha \cos\alpha = \frac{1}{2}\sin{2\alpha}</math> gives | ||
+ | |||
+ | <cmath> \left(\frac{\sin2^\circ \cdot \sin4^\circ \cdots \sin88^\circ}{\frac{1}{2} \sin2^\circ \cdot \frac{1}{2} \sin4^\circ \cdots \frac{1}{2} \sin88^\circ \cdot \sin45^\circ}\right) ^2 </cmath> | ||
+ | |||
+ | <cmath> = \left(\frac{1}{(\frac{1}{2})^{44} \cdot \frac{\sqrt{2}}{2}}\right)^2 </cmath> | ||
+ | |||
+ | <cmath> = 2^{89}. </cmath> | ||
+ | |||
+ | Thus, the answer is <math>2+89 = \boxed{091}.</math> | ||
==See Also== | ==See Also== |
Latest revision as of 16:26, 16 January 2024
Contents
Problem
With all angles measured in degrees, the product , where and are integers greater than 1. Find .
Solution 1
Let . Then from the identity we deduce that (taking absolute values and noticing ) But because is the reciprocal of and because , if we let our product be then because is positive in the first and second quadrants. Now, notice that are the roots of Hence, we can write , and so It is easy to see that and that our answer is .
Solution 2
Let
because of the identity
we want
Thus the answer is
Solution 3
Similar to Solution , so we use and we find that: Now we can cancel the sines of the multiples of : So and we can apply the double-angle formula again: Of course, is missing, so we multiply it to both sides: Now isolate the product of the sines: And the product of the squares of the cosecants as asked for by the problem is the square of the inverse of this number: The answer is therefore .
Solution 4
Let .
Then, .
Since , we can multiply both sides by to get .
Using the double-angle identity , we get .
Note that the right-hand side is equal to , which is equal to , again, from using our double-angle identity.
Putting this back into our equation and simplifying gives us .
Using the fact that again, our equation simplifies to , and since , it follows that , which implies . Thus, .
Solution 5
Once we have the tools of complex polynomials there is no need to use the tactical tricks. Everything is so basic (I think).
Recall that the roots of are , we have Let , and take absolute value of both sides, or, Let be even, then, so, Set and we have , -Mathdummy
Solution 6
Recall that Since it is in csc, we can write in sin and then take reciprocal. We can group them by threes, . Thus So we take reciprocal, , the desired answer is leads to answer
~bluesoul
Solution 7
We have
Multiplying by gives
Using gives
Thus, the answer is
See Also
2015 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 12 |
Followed by Problem 14 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.