Difference between revisions of "1961 IMO Problems/Problem 2"
(→Solution 3 (Trigonometry)) |
|||
(39 intermediate revisions by 6 users not shown) | |||
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
− | Let | + | Let <math>a</math>, <math>b</math>, and <math>c</math> be the lengths of a triangle whose area is ''S''. Prove that |
<math>a^2 + b^2 + c^2 \ge 4S\sqrt{3}</math> | <math>a^2 + b^2 + c^2 \ge 4S\sqrt{3}</math> | ||
Line 8: | Line 8: | ||
==Solution== | ==Solution== | ||
+ | By Heron's formula, we have | ||
+ | <cmath>S = \sqrt{s(s-a)(s-b)(s-c)}.</cmath> | ||
+ | This can be simplified to | ||
+ | <cmath>S = \sqrt{\left(\frac{a+b+c}{2}\right)\left(\frac{-a+b+c}{2}\right)\left(\frac{a-b+c}{2}\right)\left(\frac{a+b-c}{2}\right)}.</cmath> | ||
+ | Next, we can factor out all of the <math>2</math>s and use a clever difference of squares: | ||
+ | <cmath>S = \frac{1}{4}\sqrt{(a+b+c)(-a+b+c)(a-b+c)(a+b-c)}</cmath> | ||
+ | <cmath>S = \frac{1}{4}\sqrt{((b+c)^2 - a^2)(a^2 - (b-c)^2)}</cmath> | ||
+ | <cmath>S = \frac{1}{4}\sqrt{(2bc + b^2 + c^2 - a^2)(2bc - b^2 - c^2 + a^2)}.</cmath> | ||
+ | We can now use difference of squares again: | ||
+ | <cmath>S = \frac{1}{4}\sqrt{4b^2c^2-(b^2 + c^2 - a^2)^2}</cmath> | ||
+ | <cmath>4S\sqrt{3} = \sqrt{3(4b^2c^2 - (b^2 + c^2 - a^2)^2)}</cmath> | ||
+ | We must prove that the RHS of this equation is less than or equal to <math>a^2 + b^2 + c^2</math>. | ||
− | {{ | + | Let <math>a^2 = A</math>, <math>b^2 = B</math>, <math>c^2 = C</math>. Then, our inequality can be reduced to |
+ | <cmath>A + B + C \geq \sqrt{6AB + 6BC + 6CA - 3A^2 - 3B^2 - 3C^2}.</cmath> | ||
+ | We now have to prove | ||
+ | <cmath>(A + B + C)^2 \geq 6AB + 6BC + 6CA - 3A^2 - 3B^2 - 3C^2.</cmath> | ||
+ | We can simplify: | ||
+ | <cmath>A^2 + B^2 + C^2 + 2AB + 2BC + 2CA \geq 6AB + 6BC + 6CA - 3A^2 - 3B^2 - 3C^2</cmath> | ||
+ | <cmath>4A^2 + 4B^2 + 4C^2 \geq 4AB + 4BC + 4CA</cmath> | ||
+ | <cmath>A^2 + B^2 + C^2 \geq AB + BC + CA.</cmath> | ||
+ | Finally, we can apply AM-GM: | ||
+ | <cmath>\frac{A^2 + B^2}{2} \geq AB</cmath> | ||
+ | <cmath>\frac{B^2 + C^2}{2} \geq BC</cmath> | ||
+ | <cmath>\frac{C^2 + A^2}{2} \geq CA</cmath> | ||
+ | Adding these all up, we have the desired inequality | ||
+ | <cmath>A^2 + B^2 + C^2 \geq AB + BC + CA, </cmath> | ||
+ | and so the proof is complete.<math>\square</math> | ||
− | == | + | To have <math>A + B + C = 4S\sqrt{3}</math>, we must satisfy |
+ | <cmath>\frac{A^2 + B^2}{2} = AB,</cmath> | ||
+ | <cmath>\frac{B^2 + C^2}{2} = BC,</cmath> | ||
+ | <cmath>\frac{C^2 + A^2}{2} = CA.</cmath> | ||
+ | This is only true when <math>A = B = C</math>, and thus <math>a = b = c</math>. Therefore, equality happens when the triangle is equilateral. | ||
− | [ | + | ~mathboy100 |
+ | |||
+ | ==Solution 2 (duality principle)== | ||
+ | We firstly use the duality principle. | ||
+ | <math>a=x+y~~b=x+z~~c=y+z</math> | ||
+ | The LHS becomes <math>(x+y)^2+(x+z)^2+(y+z)^2</math> | ||
+ | and the RHS becomes <math>4\sqrt{3}\sqrt{(x+y+z)xyz}</math> If we use Heron's formula. | ||
+ | By AM-GM <math>\frac{(x+y+z)^3}{27} \ge xyz</math> | ||
+ | Making this substitution <math>[ABC]</math> becomes | ||
+ | <math>\sqrt{(x+y+z)^4\frac{1}{27}}</math> | ||
+ | and once we take the square root of the area then our RHS becomes | ||
+ | <math>\frac{4\sqrt{3}}{3\sqrt{3}}(x+y+z)^2=\frac{4}{3}(x+y+z)^2</math> | ||
+ | Multiplying the RHS and the LHS by 3 we get the LHS to be | ||
+ | <math>3((x+y)^2+(x+z)^2+(y+z)^2)=6(x^2+y^2+z^2+xy+yz+xz).</math> | ||
+ | Our RHS becomes | ||
+ | <math>4(x^2+y^2+z^2)+8(xy+yz+xz).</math> | ||
+ | Subtracting <math>4(x^2+y^2+z^2)+6(xy+yz+xz)</math> we have the LHS equal to <math>(2(x^2+y^2+z^2))</math> and the RHS being <math>2(xy+xz+yz)</math> | ||
+ | If LHS <math>\ge</math> RHS then LHS-RHS<math>\ge 0</math> | ||
+ | LHS-RHS=<math>2(x^2+y^2+z^2)-2(xy+xz+yz)=x^2-2xy+y^2+x^2-2x+z^2+y^2-2yz+z^2=(x-y)^2+(x-z)^2+(y-z)^2.</math> | ||
+ | <math>(x-y)^2+(x-z)^2+(y-z)^2 \ge 0</math> by the trivial inequality so therefore, <math>a^2 + b^2 + c^2 \ge 4S\sqrt{3}</math> and we're done. | ||
+ | |||
+ | ~PEKKA | ||
+ | |||
+ | ==Solution 3 (Trigonometry)== | ||
+ | Let <math>\theta</math> be the angle between edges <math>a</math> and <math>b</math> subtending <math>c</math>. | ||
+ | |||
+ | We notice that <math>0\le(a-b\cos x)^2=a^2-2ab\cos x+b^2\cos^2x\le a^2-2ab\cos x+b^2</math> holds for all <math>a,b,x\in\mathbb R</math>. | ||
+ | |||
+ | If we let <math>x=\theta+30^\circ</math>, | ||
+ | <cmath>\begin{align*}a^2-2ab\sin(\theta+30^\circ)+b^2&\geq0\\ | ||
+ | a^2-2ab(\sin\theta\cos30^\circ+\cos\theta\sin30^\circ)+b^2&\geq0\\a^2-ab\sin\theta\sqrt3-ab\cos\theta+b^2&\geq0\\a^2-ab\cos\theta+b^2&\geq ab\sin\theta\sqrt3\\a^2-ab\cos\theta+b^2&\geq2\left(\frac12ab\sin\theta\right)\sqrt3\\a^2-ab\cos\theta+b^2&\geq2T\sqrt3\\2a^2-2ab\cos\theta+2b^2&\geq4T\sqrt3\\a^2+b^2+(a^2-2ab\cos\theta+b^2)&\geq4\sqrt3\ T\\\boxed{a^2+b^2+c^2\geq4\sqrt3\ T}\ \blacksquare\end{align*}</cmath> | ||
+ | |||
+ | For equality, it is necessary for <math>a^2-2ab\sin x+b^2=0\implies a=b</math> and <math>\sin x=\sin(\theta+30^\circ)=1\implies\theta=60^\circ</math>, which implies that <math>\triangle ABC</math> is equilateral. | ||
+ | |||
+ | ~ztilB | ||
+ | |||
+ | ==Video Solution== | ||
+ | |||
+ | https://www.youtube.com/watch?v=ZYOB-KSEF3k&list=PLa8j0YHOYQQJGzkvK2Sm00zrh0aIQnof8&index=4 | ||
+ | - AMBRIGGS | ||
+ | {{IMO box|year=1961|num-b=1|num-a=3}} |
Latest revision as of 06:29, 30 July 2024
Contents
Problem
Let , , and be the lengths of a triangle whose area is S. Prove that
In what case does equality hold?
Solution
By Heron's formula, we have This can be simplified to Next, we can factor out all of the s and use a clever difference of squares: We can now use difference of squares again: We must prove that the RHS of this equation is less than or equal to .
Let , , . Then, our inequality can be reduced to We now have to prove We can simplify: Finally, we can apply AM-GM: Adding these all up, we have the desired inequality and so the proof is complete.
To have , we must satisfy This is only true when , and thus . Therefore, equality happens when the triangle is equilateral.
~mathboy100
Solution 2 (duality principle)
We firstly use the duality principle. The LHS becomes and the RHS becomes If we use Heron's formula. By AM-GM Making this substitution becomes and once we take the square root of the area then our RHS becomes Multiplying the RHS and the LHS by 3 we get the LHS to be Our RHS becomes Subtracting we have the LHS equal to and the RHS being If LHS RHS then LHS-RHS LHS-RHS= by the trivial inequality so therefore, and we're done.
~PEKKA
Solution 3 (Trigonometry)
Let be the angle between edges and subtending .
We notice that holds for all .
If we let ,
For equality, it is necessary for and , which implies that is equilateral.
~ztilB
Video Solution
https://www.youtube.com/watch?v=ZYOB-KSEF3k&list=PLa8j0YHOYQQJGzkvK2Sm00zrh0aIQnof8&index=4 - AMBRIGGS
1961 IMO (Problems) • Resources | ||
Preceded by Problem 1 |
1 • 2 • 3 • 4 • 5 • 6 | Followed by Problem 3 |
All IMO Problems and Solutions |