Difference between revisions of "2016 AMC 8 Problems/Problem 3"

(Solution 1)
(Video Solution)
 
(5 intermediate revisions by 4 users not shown)
Line 12: Line 12:
  
 
Since <math>90</math> is <math>20</math> more than <math>70</math>, and <math>80</math> is <math>10</math> more than <math>70</math>, for <math>70</math> to be the average, the other number must be <math>30</math> less than <math>70</math>, or  <math>\boxed{\textbf{(A)}\ 40}</math>.
 
Since <math>90</math> is <math>20</math> more than <math>70</math>, and <math>80</math> is <math>10</math> more than <math>70</math>, for <math>70</math> to be the average, the other number must be <math>30</math> less than <math>70</math>, or  <math>\boxed{\textbf{(A)}\ 40}</math>.
 +
 +
== Video Solution
 +
https://youtu.be/R2jD3a5SXAY?si=brG-V2T2JYRkh_qC
 +
A solution so simple a 12-year-old made it!
 +
~Elijahman~
 +
  
 
==Video Solution==
 
==Video Solution==
  
https://www.youtube.com/watch?v=LqnQQcUVJmA (has questions 1-5)
+
https://youtu.be/R2jD3a5SXAY?si=q-T8ZTrHYIb7j-xB
 +
 
 +
A solution so simple a 12-year-old made it!
 +
 
 +
~Elijahman~
 +
 
 +
==Video Solution (THINKING CREATIVELY!!!)==
 +
https://youtu.be/jRPgMzBXYLc
 +
 
 +
~Education, the Study of Everything
 +
 
 +
==Video Solution==
  
 
https://youtu.be/EuAzkusSbpY
 
https://youtu.be/EuAzkusSbpY
  
 
~savannahsolver
 
~savannahsolver
 +
 +
== Video Solution by OmegaLearn ==
 +
https://youtu.be/51K3uCzntWs?t=772
 +
 +
~ pi_is_3.14
 +
  
 
==See Also==
 
==See Also==
 
{{AMC8 box|year=2016|num-b=2|num-a=4}}
 
{{AMC8 box|year=2016|num-b=2|num-a=4}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 10:41, 20 June 2024

Problem

Four students take an exam. Three of their scores are $70, 80,$ and $90$. If the average of their four scores is $70$, then what is the remaining score?

$\textbf{(A) }40\qquad\textbf{(B) }50\qquad\textbf{(C) }55\qquad\textbf{(D) }60\qquad \textbf{(E) }70$

Solutions

Solution 1

Let $r$ be the remaining student's score. We know that the average, 70, is equal to $\frac{70 + 80 + 90 + r}{4}$. We can use basic algebra to solve for $r$: \[\frac{70 + 80 + 90 + r}{4} = 70\] \[\frac{240 + r}{4} = 70\] \[240 + r = 280\] \[r = 40\] giving us the answer of $\boxed{\textbf{(A)}\ 40}$.

Solution 2

Since $90$ is $20$ more than $70$, and $80$ is $10$ more than $70$, for $70$ to be the average, the other number must be $30$ less than $70$, or $\boxed{\textbf{(A)}\ 40}$.

== Video Solution https://youtu.be/R2jD3a5SXAY?si=brG-V2T2JYRkh_qC A solution so simple a 12-year-old made it! ~Elijahman~


Video Solution

https://youtu.be/R2jD3a5SXAY?si=q-T8ZTrHYIb7j-xB

A solution so simple a 12-year-old made it!

~Elijahman~

Video Solution (THINKING CREATIVELY!!!)

https://youtu.be/jRPgMzBXYLc

~Education, the Study of Everything

Video Solution

https://youtu.be/EuAzkusSbpY

~savannahsolver

Video Solution by OmegaLearn

https://youtu.be/51K3uCzntWs?t=772

~ pi_is_3.14


See Also

2016 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 2
Followed by
Problem 4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png