Difference between revisions of "1970 IMO Problems/Problem 2"

(creation)
 
m (Take out a link to a page which does not exist.)
 
(3 intermediate revisions by 3 users not shown)
Line 17: Line 17:
  
 
==Solution==
 
==Solution==
{{solution}}
+
 
 +
Suppose <math>a>b</math>.  Then for all integers <math>0 \le k \le n</math>, <math>x_n x_k a^n b^k \ge x_n x_k b^n a^k</math>, with equality only when <math>k=n</math> or <math>x_k = 0</math>.  (In particular, we have strict inequality for <math>k=n-1</math>.)  In summation, this becomes
 +
<cmath> x_n a^n \sum_{k=0}^n x_k b^k > x_n b^n \sum_{k=0}^n x_k a^k, </cmath>
 +
or
 +
<cmath> x_n a^n \cdot B_n > x_n b^n \cdot A_n, </cmath>
 +
which is equivalent to
 +
<cmath> \frac{x_n a^n}{A_n} > \frac{x_n b^n}{B_n} . </cmath>
 +
This implies
 +
<cmath> \frac{A_{n-1}}{A_n} = 1 - \frac{x_n a^n}{A_n} < 1 - \frac{x_n b^n}{B_n} = \frac{B_{n-1}}{B_n} . </cmath>
 +
On the other hand, if <math>a=b</math>, then evidently <math>A_{n-1}/A_n = B_{n-1}/B_n</math>, and if <math>a < b</math>, then by what we have just shown, <math>A_{n-1}/A_n > B_{n-1}/B_n</math>.  Hence <math>A_{n-1}/A_n < B_{n-1}/B_n</math> if and only if <math>a>b</math>, as desired.  <math>\blacksquare</math>
 +
 
 +
 
 +
{{alternate solutions}}
 +
 
 +
== Resources ==
  
 
{{IMO box|year=1970|num-b=1|num-a=3}}
 
{{IMO box|year=1970|num-b=1|num-a=3}}
  
[[Category:Olympiad Number Theory Problems]]
+
 
 +
[[Category:Olympiad Algebra Problems]]

Latest revision as of 16:12, 17 November 2024

Problem

Let $a, b$, and $n$ be integers greater than 1, and let $a$ and $b$ be the bases of two number systems. $A_{n-1}$ and $A_{n}$ are numbers in the system with base $a$ and $B_{n-1}$ and $B_{n}$ are numbers in the system with base $b$; these are related as follows:

$A_{n} = x_{n}x_{n-1}\cdots x_{0}, A_{n-1} = x_{n-1}x_{n-2}\cdots x_{0}$,

$B_{n} = x_{n}x_{n-1}\cdots x_{0}, B_{n-1} = x_{n-1}x_{n-2}\cdots x_{0}$,

$x_{n} \neq 0, x_{n-1} \neq 0$.

Prove:

$\frac{A_{n-1}}{A_{n}} < \frac{B_{n-1}}{B_{n}}$ if and only if $a > b$.

Solution

Suppose $a>b$. Then for all integers $0 \le k \le n$, $x_n x_k a^n b^k \ge x_n x_k b^n a^k$, with equality only when $k=n$ or $x_k = 0$. (In particular, we have strict inequality for $k=n-1$.) In summation, this becomes \[x_n a^n \sum_{k=0}^n x_k b^k > x_n b^n \sum_{k=0}^n x_k a^k,\] or \[x_n a^n \cdot B_n > x_n b^n \cdot A_n,\] which is equivalent to \[\frac{x_n a^n}{A_n} > \frac{x_n b^n}{B_n} .\] This implies \[\frac{A_{n-1}}{A_n} = 1 - \frac{x_n a^n}{A_n} < 1 - \frac{x_n b^n}{B_n} = \frac{B_{n-1}}{B_n} .\] On the other hand, if $a=b$, then evidently $A_{n-1}/A_n = B_{n-1}/B_n$, and if $a < b$, then by what we have just shown, $A_{n-1}/A_n > B_{n-1}/B_n$. Hence $A_{n-1}/A_n < B_{n-1}/B_n$ if and only if $a>b$, as desired. $\blacksquare$


Alternate solutions are always welcome. If you have a different, elegant solution to this problem, please add it to this page.

Resources

1970 IMO (Problems) • Resources
Preceded by
Problem 1
1 2 3 4 5 6 Followed by
Problem 3
All IMO Problems and Solutions