Difference between revisions of "2015 AMC 10B Problems/Problem 19"
(→Solution 2) |
Happyhippos (talk | contribs) (→Solution 3) |
||
(3 intermediate revisions by one other user not shown) | |||
Line 128: | Line 128: | ||
</asy> | </asy> | ||
− | Let <math>O</math> be the the midpoint of <math>AB</math>. The perpendicular bisector of line <math>WZ</math> and <math>XY</math> will meet at <math>O</math>. Thus <math>O</math> is the center of the circle points <math>X</math>, <math>Y</math>, <math>Z</math>, and <math>W</math> | + | Let <math>O</math> be the the midpoint of <math>AB</math>. The perpendicular bisector of line <math>WZ</math> and <math>XY</math> will meet at <math>O</math>. Thus <math>O</math> is the center of the circle points <math>X</math>, <math>Y</math>, <math>Z</math>, and <math>W</math> lie on. |
<math>\angle ZAC=\angle OAY=90^{\circ}</math>, <math>\angle ZAC+\angle BAC=\angle OAY+\angle BAC</math>, <math>\angle ZAB=\angle CAY</math>, and <math>AZ=AC</math>, <math>AB=AY</math>, <math>\triangle AZB \cong \triangle ACY</math> by <math>SAS</math>, <math>BZ=YC</math>. Because <math>AZ \perp AC</math>, <math>\triangle ACY</math> is a <math>90^{\circ}</math> rotation about point <math>A</math> of <math>\triangle AZB</math>. So, <math>BZ \perp YC</math>. | <math>\angle ZAC=\angle OAY=90^{\circ}</math>, <math>\angle ZAC+\angle BAC=\angle OAY+\angle BAC</math>, <math>\angle ZAB=\angle CAY</math>, and <math>AZ=AC</math>, <math>AB=AY</math>, <math>\triangle AZB \cong \triangle ACY</math> by <math>SAS</math>, <math>BZ=YC</math>. Because <math>AZ \perp AC</math>, <math>\triangle ACY</math> is a <math>90^{\circ}</math> rotation about point <math>A</math> of <math>\triangle AZB</math>. So, <math>BZ \perp YC</math>. | ||
Line 139: | Line 139: | ||
~[https://artofproblemsolving.com/wiki/index.php/User:Isabelchen isabelchen] | ~[https://artofproblemsolving.com/wiki/index.php/User:Isabelchen isabelchen] | ||
+ | |||
+ | ==Video Solution== | ||
+ | https://www.youtube.com/watch?v=gDSIM9SAstk | ||
+ | |||
+ | |||
+ | ~[https://artofproblemsolving.com/wiki/index.php/User:Fileagingassisitant fileagingassisitant] | ||
==See Also== | ==See Also== |
Latest revision as of 15:53, 2 November 2024
Problem
In , and . Squares and are constructed outside of the triangle. The points , and lie on a circle. What is the perimeter of the triangle?
Solution 1
The center of the circle lies on the intersection between the perpendicular bisectors of chords and . Therefore we know the center of the circle must also be the midpoint of the hypotenuse. Let this point be . Draw perpendiculars to and from , and connect and . . Let and . Then . Simplifying this gives . But by Pythagorean Theorem on , we know , because . Thus . So our equation simplifies further to . However , so , which means , or . Aha! This means is just an isosceles right triangle, so , and thus the perimeter is .
Solution 2
Let and (and we're given that ). Draw line segments and . Now we have cyclic quadrilateral
This means that opposite angles sum to . Therefore, . Simplifying carefully, we get . Similarly, = .
That means .
Setting up proportions, Cross-multiplying we get:
But also, by Pythagoras, , so
Therefore, is an isosceles right triangle. , so the perimeter is
~BakedPotato66
~LegionOfAvatars
Solution 3
Both solution 1 and 2 uses Pythagorean Theorem to prove is isosceles right triangle. I'm going to prove is isosceles right triangle without using Pythagorean Theorem. I will use geometry rotation.
Let be the the midpoint of . The perpendicular bisector of line and will meet at . Thus is the center of the circle points , , , and lie on.
, , , and , , by , . Because , is a rotation about point of . So, .
Because and is the radius of , . Because is the midpoint of hypotenuse , , , by . Because , is a rotation about point of . So, .
, , is isosceles right triangle, . So, is isosceles right triangle.
Therefore, , the perimeter is .
Video Solution
https://www.youtube.com/watch?v=gDSIM9SAstk
See Also
2015 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 18 |
Followed by Problem 20 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.