Difference between revisions of "2023 AMC 10A Problems/Problem 3"

(Solution 1)
(redirect, combine)
(Tag: New redirect)
 
(2 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 
+
#redirect[[2023 AMC 12A Problems/Problem 3]]
==Problem==
 
How many positive perfect squares less than <math>2023</math> are divisible by <math>5</math>?
 
 
 
<cmath>\textbf{(A) } 8 \qquad\textbf{(B) }9 \qquad\textbf{(C) }10 \qquad\textbf{(D) }11 \qquad\textbf{(E) } 12</cmath>
 
 
 
==Solution 1==
 
Note that <math>45^{2}=2025</math> so the list is <math>5,10,15,20,25,30,35,40</math> there are <math>8</math> elements so the answer is <math>\boxed{\textbf{(A) 8}}</math>.
 
 
 
~zhenghua
 
 
 
==Solution 2 (slightly refined)==
 
Since <math>\left \lfloor{\sqrt{2023}}\right \rfloor = 44</math>, there are <math>\left \lfloor{\frac{44}{5}}\right \rfloor = \boxed{\textbf{(A) 8}}</math> positive integers.
 
 
 
~not_slay
 
 
 
==See Also==
 
{{AMC12 box|year=2023|ab=A|num-b=2|num-a=4}}
 
{{AMC10 box|year=2023|ab=A|num-b=2|num-a=4}}
 
{{MAA Notice}}
 

Latest revision as of 22:08, 9 November 2023