# 2023 AMC 12A Problems/Problem 3

The following problem is from both the 2023 AMC 10A #3 and 2023 AMC 12A #3, so both problems redirect to this page.

## Problem

How many positive perfect squares less than $2023$ are divisible by $5$?

$\textbf{(A) } 8 \qquad\textbf{(B) }9 \qquad\textbf{(C) }10 \qquad\textbf{(D) }11 \qquad\textbf{(E) } 12$

## Solution 2 (slightly refined)

Since $\left \lfloor{\sqrt{2023}}\right \rfloor = 44$, there are $\left \lfloor{\frac{44}{5}}\right \rfloor = \boxed{\textbf{(A) 8}}$ perfect squares less than 2023.

~not_slay

## Solution 3

Since $5$ is square-free, each solution must be divisible by $5^2=25$. We take $\left \lfloor{\frac{2023}{25}}\right \rfloor = 80$ and see that there are $\boxed{\textbf{(A) 8}}$ positive perfect squares no greater than $80$.

~jwseph

## Solution 4

Since the perfect squares have to be divisible by 5, then we know it has to be 5 times some number squared (5*x)^2. With this information, you can figure out every single product of 5 and another number squared to count how many perfect squares are divisible by 5 that are less than 2023. (EX: 5^2 = 25, 10^2 = 100, ... 40^2 = 1600) With this you get a max of 40^2, or $\left \lfloor{\frac{44}{5}}\right \rfloor = \boxed{\textbf{(A) 8}}$ solutions.

~BlueShardow

## Solution 5

The way of BlueShardow refined:

All it takes is to recall that 45 squared is 2025, and 45 is 5 x 9. So all the squares of 5 x 1, 5 x 2, 5 x 3 so on are divisible by 5. So the answer is 8. It can be done even if one does not remember that 45 squared is 2025, all it takes is intuition. One can easily see mentally that 5 x 8 that is 40 squared is 1600, and then one has to do just one more computation and see that 5 x 9 that is 45 squared exceeds 2023, so the answer is 8.

~edit by RobinDaBank

## Video Solution

~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)

## Video Solution

~Education, the Study of Everything