Difference between revisions of "1967 AHSME Problems/Problem 25"

(Solution)
(Solution)
 
Line 9: Line 9:
  
 
== Solution ==
 
== Solution ==
<math>\fbox{A}</math>
+
 
 
Given that <math>p</math> is odd, <math>p-1</math> must be even, therefore <math>{{\frac{1}{2}}(p-1)}</math> must be an integer, which will be denoted as n.
 
Given that <math>p</math> is odd, <math>p-1</math> must be even, therefore <math>{{\frac{1}{2}}(p-1)}</math> must be an integer, which will be denoted as n.
 
<cmath>(p-1)^n-1</cmath>
 
<cmath>(p-1)^n-1</cmath>
Line 15: Line 15:
 
<cmath>=((p-1)-1)((p-1)^{n-1}+\cdots+1^{n-1})</cmath>
 
<cmath>=((p-1)-1)((p-1)^{n-1}+\cdots+1^{n-1})</cmath>
 
<cmath>=(p-2)((p-1)^{n-1}+\cdots+1^{n-1})</cmath>
 
<cmath>=(p-2)((p-1)^{n-1}+\cdots+1^{n-1})</cmath>
Therefore <math>p-2</math> divide <math>(p-1)^{{\frac{1}{2}}(p-1)}</math>
+
<math>p-2</math> divide <math>(p-1)^{{\frac{1}{2}}(p-1)}</math><math>\fbox{A}</math>.
  
 
== See also ==
 
== See also ==

Latest revision as of 23:28, 18 November 2023

Problem

For every odd number $p>1$ we have:

$\textbf{(A)}\ (p-1)^{\frac{1}{2}(p-1)}-1 \; \text{is divisible by} \; p-2\qquad \textbf{(B)}\ (p-1)^{\frac{1}{2}(p-1)}+1 \; \text{is divisible by} \; p\\ \textbf{(C)}\ (p-1)^{\frac{1}{2}(p-1)} \; \text{is divisible by} \; p\qquad \textbf{(D)}\ (p-1)^{\frac{1}{2}(p-1)}+1 \; \text{is divisible by} \; p+1\\ \textbf{(E)}\ (p-1)^{\frac{1}{2}(p-1)}-1 \; \text{is divisible by} \; p-1$

Solution

Given that $p$ is odd, $p-1$ must be even, therefore ${{\frac{1}{2}}(p-1)}$ must be an integer, which will be denoted as n. \[(p-1)^n-1\] By sum and difference of powers \[=((p-1)-1)((p-1)^{n-1}+\cdots+1^{n-1})\] \[=(p-2)((p-1)^{n-1}+\cdots+1^{n-1})\] $p-2$ divide $(p-1)^{{\frac{1}{2}}(p-1)}$$\fbox{A}$.

See also

1967 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 24
Followed by
Problem 26
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png