Difference between revisions of "2002 AMC 12P Problems/Problem 18"

(Solution 1)
(Solution 1)
 
(4 intermediate revisions by one other user not shown)
Line 1: Line 1:
 +
{{duplicate|[[2002 AMC 12P Problems|2002 AMC 12P #18]] and [[2002 AMC 10P Problems|2002 AMC 10P #19]]}}
 +
 
== Problem ==
 
== Problem ==
 
If <math>a,b,c</math> are real numbers such that <math>a^2 + 2b =7</math>, <math>b^2 + 4c= -7,</math> and <math>c^2 + 6a= -14</math>, find <math>a^2 + b^2 + c^2.</math>
 
If <math>a,b,c</math> are real numbers such that <math>a^2 + 2b =7</math>, <math>b^2 + 4c= -7,</math> and <math>c^2 + 6a= -14</math>, find <math>a^2 + b^2 + c^2.</math>
Line 15: Line 17:
  
 
== Solution 1==
 
== Solution 1==
Adding all of the equations gives <math>a^2 + b^2 +c^2 + 6a + 2b + 4c=-14.</math> Adding 14 on both sides gives <math>a^2 + b^2 +c^2 + 6a + 2b + 4c+14=0.</math> Notice that 14 can split into <math>9, 1,</math> and <math>4,</math> which coincidentally makes <math>a^2 +6a, b^2+2b,</math> and <math>c^2+4c</math> into perfect squares. Therefore, <math>(a+3)^2 + (b+1)^2 + (c+2) ^2 =0.</math> An easy solution to this equation is <math>a=-3, b=-1,</math> and <math>c=-2.</math> Plugging in that solution, we get <math>a^2+b^2+c^2=-3^2+-1^2+-2^2=\boxed{\textbf{(B) } 14}.</math>
+
Adding all of the equations gives <math>a^2 + b^2 +c^2 + 6a + 2b + 4c=-14.</math> Adding 14 on both sides gives <math>a^2 + b^2 +c^2 + 6a + 2b + 4c+14=0.</math> Notice that 14 can split into <math>9, 1,</math> and <math>4,</math> which coincidentally makes <math>a^2 +6a, b^2+2b,</math> and <math>c^2+4c</math> into perfect squares. Therefore, <math>(a+3)^2 + (b+1)^2 + (c+2) ^2 =0.</math> An easy solution to this equation is <math>a=-3, b=-1,</math> and <math>c=-2.</math> Plugging in that solution, we get <math>a^2+b^2+c^2=(-3)^2+(-1)^2+(-2)^2=\boxed{\textbf{(A) } 14}.</math>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
If <math>a,b,c</math> are real numbers such that <math>a^2 + 2b =7</math>, <math>b^2 + 4c= -7,</math> and <math>c^2 + 6a= -14</math>, find <math>a^2 + b^2 + c^2.</math>
 
  
 
== See also ==
 
== See also ==
 +
{{AMC10 box|year=2002|ab=P|num-b=18|num-a=20}}
 
{{AMC12 box|year=2002|ab=P|num-b=17|num-a=19}}
 
{{AMC12 box|year=2002|ab=P|num-b=17|num-a=19}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 13:08, 19 July 2024

The following problem is from both the 2002 AMC 12P #18 and 2002 AMC 10P #19, so both problems redirect to this page.

Problem

If $a,b,c$ are real numbers such that $a^2 + 2b =7$, $b^2 + 4c= -7,$ and $c^2 + 6a= -14$, find $a^2 + b^2 + c^2.$

$\text{(A) }14 \qquad \text{(B) }21 \qquad \text{(C) }28 \qquad \text{(D) }35 \qquad \text{(E) }49$

Solution 1

Adding all of the equations gives $a^2 + b^2 +c^2 + 6a + 2b + 4c=-14.$ Adding 14 on both sides gives $a^2 + b^2 +c^2 + 6a + 2b + 4c+14=0.$ Notice that 14 can split into $9, 1,$ and $4,$ which coincidentally makes $a^2 +6a, b^2+2b,$ and $c^2+4c$ into perfect squares. Therefore, $(a+3)^2 + (b+1)^2 + (c+2) ^2 =0.$ An easy solution to this equation is $a=-3, b=-1,$ and $c=-2.$ Plugging in that solution, we get $a^2+b^2+c^2=(-3)^2+(-1)^2+(-2)^2=\boxed{\textbf{(A) } 14}.$

See also

2002 AMC 10P (ProblemsAnswer KeyResources)
Preceded by
Problem 18
Followed by
Problem 20
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2002 AMC 12P (ProblemsAnswer KeyResources)
Preceded by
Problem 17
Followed by
Problem 19
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png