Difference between revisions of "2016 AMC 8 Problems/Problem 23"

(Video Solution)
(Video Solution)
 
(2 intermediate revisions by the same user not shown)
Line 10: Line 10:
  
 
Now, <math>\angle{CED}=m\angle{AEC}+m\angle{AEB}+m\angle{BED} = 30^{\circ}+60^{\circ}+30^{\circ} = 120^{\circ}</math>. Therefore, the answer is <math>\boxed{\textbf{(C) }\ 120}</math>.
 
Now, <math>\angle{CED}=m\angle{AEC}+m\angle{AEB}+m\angle{BED} = 30^{\circ}+60^{\circ}+30^{\circ} = 120^{\circ}</math>. Therefore, the answer is <math>\boxed{\textbf{(C) }\ 120}</math>.
 
===Solution 2===
 
We know that <math>\triangle{EAB}</math> is equilateral, because all of its sides are congruent radii. Because point <math>A</math> is the center of a circle, <math>C</math> is at the border of a circle, and <math>E</math> and <math>B</math> are points on the edge of that circle, <math>m\angle{ECB}=\frac{1}{2}\cdot m\angle{EAB}=\frac{1}{2}\cdot60^{\circ}=30^{\circ}</math>. Since <math>\triangle{CED}</math> is isosceles, angle <math>\angle{CED}=180^{\circ}-2\cdot30^{\circ}=\boxed{\text{(C)}\; 120}</math> degrees -SweetMango77.
 
 
==Video Solution==
 
https://youtu.be/UZqVG5Q1liA?si=LDc8tMTnj1FMMlZc
 
 
A simple solution that does not require advanced techniques.
 
 
~Elijahman~
 
  
 
==Video Solution==
 
==Video Solution==
Line 25: Line 15:
  
 
~Education, the Study of Everything
 
~Education, the Study of Everything
 
==Video Solution==
 
 
https://youtu.be/NumhAGApJ7c - Happytwin
 
  
 
== Video Solution by OmegaLearn ==
 
== Video Solution by OmegaLearn ==

Latest revision as of 09:29, 24 July 2024

Problem

Two congruent circles centered at points $A$ and $B$ each pass through the other circle's center. The line containing both $A$ and $B$ is extended to intersect the circles at points $C$ and $D$. The circles intersect at two points, one of which is $E$. What is the degree measure of $\angle CED$?

$\textbf{(A) }90\qquad\textbf{(B) }105\qquad\textbf{(C) }120\qquad\textbf{(D) }135\qquad \textbf{(E) }150$

Solutions

Solution 1

Observe that $\triangle{EAB}$ is equilateral. Therefore, $m\angle{AEB}=m\angle{EAB}=m\angle{EBA} = 60^{\circ}$. Since $CD$ is a straight line, we conclude that $m\angle{EBD} = 180^{\circ}-60^{\circ}=120^{\circ}$. Since $BE=BD$ (both are radii of the same circle), $\triangle{BED}$ is isosceles, meaning that $m\angle{BED}=m\angle{BDE}=30^{\circ}$. Similarly, $m\angle{AEC}=m\angle{ACE}=30^{\circ}$.

Now, $\angle{CED}=m\angle{AEC}+m\angle{AEB}+m\angle{BED} = 30^{\circ}+60^{\circ}+30^{\circ} = 120^{\circ}$. Therefore, the answer is $\boxed{\textbf{(C) }\ 120}$.

Video Solution

https://youtu.be/iGG_Hz-V6lU

~Education, the Study of Everything

Video Solution by OmegaLearn

https://youtu.be/FDgcLW4frg8?t=968

~ pi_is_3.14

Video Solution

https://youtu.be/nLlnMO6D5ek

~savannahsolver

See Also

2016 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 22
Followed by
Problem 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png