Difference between revisions of "2002 AMC 10P Problems/Problem 1"
(→See also) |
|||
(15 intermediate revisions by one other user not shown) | |||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
− | + | The ratio <math>\frac{(2^4)^8}{(4^8)^2}</math> equals | |
<math> | <math> | ||
− | \text{(A) }4 | + | \text{(A) }\frac{1}{4} |
\qquad | \qquad | ||
− | \text{(B) } | + | \text{(B) }\frac{1}{2} |
\qquad | \qquad | ||
− | \text{(C) } | + | \text{(C) }1 |
\qquad | \qquad | ||
− | \text{(D) } | + | \text{(D) }2 |
\qquad | \qquad | ||
− | \text{(E) } | + | \text{(E) }8 |
</math> | </math> | ||
== Solution 1== | == Solution 1== | ||
− | + | We can use basic rules of exponentiation to solve this problem. | |
− | <math>\ | + | <math>\frac{(2^4)^8}{(4^8)^2} |
+ | =\frac{(2^4)^8}{(2^{16})^2} | ||
+ | =\frac{2^{32}}{2^{32}} | ||
+ | =1</math> | ||
− | + | Thus, our answer is <math>\boxed{\textbf{(C) } 1}.</math> | |
− | + | == Solution 2== | |
− | + | We can rearrange the exponents on the bottom to solve this problem: | |
− | |||
− | |||
− | |||
− | |||
+ | <math>\frac{(2^4)^8}{(4^8)^2} | ||
+ | =\frac{(2^4)^8}{(4^{2})^8} | ||
+ | =\frac{16^{8}}{16^{8}} | ||
+ | =\boxed{\textbf{(C) } 1}</math> | ||
== See also == | == See also == | ||
{{AMC10 box|year=2002|ab=P|before=First question|num-a=2}} | {{AMC10 box|year=2002|ab=P|before=First question|num-a=2}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Latest revision as of 14:55, 13 August 2024
Contents
Problem
The ratio equals
Solution 1
We can use basic rules of exponentiation to solve this problem.
Thus, our answer is
Solution 2
We can rearrange the exponents on the bottom to solve this problem:
See also
2002 AMC 10P (Problems • Answer Key • Resources) | ||
Preceded by First question |
Followed by Problem 2 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.