Difference between revisions of "2015 AMC 12B Problems/Problem 8"
Lawofcosine (talk | contribs) m (→Solution 1) |
Lawofcosine (talk | contribs) m (→Solution 1) |
||
(One intermediate revision by the same user not shown) | |||
Line 5: | Line 5: | ||
==Solution 1== | ==Solution 1== | ||
− | + | <math>(625^{\log_5 2015})^\frac{1}{4}=((5^4)^{\log_5 2015})^\frac{1}{4}=(5^{4 \cdot \log_5 2015})^\frac{1}{4}=(5^{\log_5 2015 \cdot 4})^\frac{1}{4}=((5^{\log_5 2015})^4)^\frac{1}{4}=(2015^4)^\frac{1}{4}=\boxed{\textbf{(D)}\; 2015}</math> | |
− | (625^{\log_5 2015})^\frac{1}{4} | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
==Solution 2== | ==Solution 2== |
Latest revision as of 17:24, 18 October 2024
Contents
Problem
What is the value of ?
Solution 1
Solution 2
We can rewrite as as . Thus,
Solution 3
~ cxsmi
Solution 4 (Last resort)
We note that the year number is just , so just guess .
~xHypotenuse
Easily the best solution
Video Solution by OmegaLearn
https://youtu.be/RdIIEhsbZKw?t=738
~ pi_is_3.14
See Also
2015 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 7 |
Followed by Problem 9 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.