Difference between revisions of "2024 AMC 10B Problems/Problem 2"

(Problem)
(Solution 1)
 
(One intermediate revision by the same user not shown)
Line 20: Line 20:
  
 
Therefore, the equation is equal to <math>720 \cdot 7! - 720 \cdot 7! = \boxed{\textbf{(B) }0}</math>
 
Therefore, the equation is equal to <math>720 \cdot 7! - 720 \cdot 7! = \boxed{\textbf{(B) }0}</math>
 +
 +
Solution for certain China test papers:
 +
 +
<math>0 - 5! = \boxed{\textbf{(A) }-120}</math>
 +
 +
~Aray10 (Main Solution) and RULE101 (Modifications for certain China test papers)
  
 
==See also==
 
==See also==

Latest revision as of 04:13, 14 November 2024

The following problem is from both the 2024 AMC 10B #2 and 2024 AMC 12B #2, so both problems redirect to this page.

Problem

What is $10! - 7! \cdot 6!$

$\textbf{(A) } -120 \qquad\textbf{(B) } 0 \qquad\textbf{(C) } 120 \qquad\textbf{(D) } 600 \qquad\textbf{(E) } 720$


Certain China testpapers:

What is $10! - 7! \cdot 6! - 5!$

$\textbf{(A) } -120 \qquad\textbf{(B) } 0 \qquad\textbf{(C) } 120 \qquad\textbf{(D) } 600 \qquad\textbf{(E) } 720$

Solution 1

$10! = 10 \cdot 9 \cdot 8 \cdot 7! = 720 \cdot 7!$

$6! \cdot 7! = 720 \cdot 7!$

Therefore, the equation is equal to $720 \cdot 7! - 720 \cdot 7! = \boxed{\textbf{(B) }0}$

Solution for certain China test papers:

$0 - 5! = \boxed{\textbf{(A) }-120}$

~Aray10 (Main Solution) and RULE101 (Modifications for certain China test papers)

See also

2024 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2024 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png