Difference between revisions of "2008 AMC 12A Problems/Problem 23"

(Solution)
 
(11 intermediate revisions by 7 users not shown)
Line 2: Line 2:
 
The solutions of the equation <math>z^4+4z^3i-6z^2-4zi-i=0</math> are the vertices of a convex polygon in the complex plane. What is the area of the polygon?
 
The solutions of the equation <math>z^4+4z^3i-6z^2-4zi-i=0</math> are the vertices of a convex polygon in the complex plane. What is the area of the polygon?
  
<math>\textbf{(A)}\ 2^{\frac{5}{8}} \qquad \textbf{(B)}\ 2^{\frac{3}{4}} \qquad \textbf{(C)}\ 2 \qquad \textbf{(D)}\ 2^{\frac{5}{4}} \qquad \textbf{(E)}\ 2^{\frac{3}{2}}</math>
+
<math>\mathrm{(A)}\ 2^{\frac{5}{8}}\qquad\mathrm{(B)}\ 2^{\frac{3}{4}}\qquad\mathrm{(C)}\ 2\qquad\mathrm{(D)}\ 2^{\frac{5}{4}}\qquad\mathrm{(E)}\ 2^{\frac{3}{2}}</math>
  
 
==Solution==
 
==Solution==
Line 8: Line 8:
  
 
Modifying this slightly, we can write the given equation as:
 
Modifying this slightly, we can write the given equation as:
<cmath>  {\left(x+i\right)}^{4}=1+i=2^{\frac{1}{2}}\cdot \text{cis}\, \frac {\pi}{4} </cmath>
+
<cmath>  {\left(z+i\right)}^{4}=1+i=2^{\frac{1}{2}}\cos \frac {\pi}{4} + 2^{\frac{1}{2}}i\sin \frac {\pi}{4} </cmath>
 
We can apply a translation of <math>-i</math> and a rotation of <math>-\frac{\pi}{4}</math> (both operations preserve area) to simplify the problem:
 
We can apply a translation of <math>-i</math> and a rotation of <math>-\frac{\pi}{4}</math> (both operations preserve area) to simplify the problem:
 
<cmath>z^{4}=2^{\frac{1}{2}}</cmath>
 
<cmath>z^{4}=2^{\frac{1}{2}}</cmath>
Line 16: Line 16:
 
We know that half the diagonal length of the square is <math>{\left(2^{\frac{1}{2}}\right)}^{\frac{1}{4}}=2^{\frac{1}{8}}</math>
 
We know that half the diagonal length of the square is <math>{\left(2^{\frac{1}{2}}\right)}^{\frac{1}{4}}=2^{\frac{1}{8}}</math>
  
Therefore, the area of the square is:
+
Therefore, the area of the square is
<cmath> \frac{\left( 2 \cdot 2^{\frac{1}{8} \right)}^{2}}{2}=\frac{2^{\frac{9}{4}}}{2}=2^{\frac{5}{4}} \Rightarrow D. </cmath>
+
<math> \frac{{\left( 2 \cdot 2^{\frac{1}{8}}\right)}^2}{2}=\frac{2^{\frac{9}{4}}}{2}=2^{\frac{5}{4}} \Rightarrow D. </math>
  
 
==See Also==
 
==See Also==
 
{{AMC12 box|year=2008|ab=A|num-b=22|num-a=24}}
 
{{AMC12 box|year=2008|ab=A|num-b=22|num-a=24}}
 +
{{MAA Notice}}

Latest revision as of 00:38, 10 November 2019

Problem

The solutions of the equation $z^4+4z^3i-6z^2-4zi-i=0$ are the vertices of a convex polygon in the complex plane. What is the area of the polygon?

$\mathrm{(A)}\ 2^{\frac{5}{8}}\qquad\mathrm{(B)}\ 2^{\frac{3}{4}}\qquad\mathrm{(C)}\ 2\qquad\mathrm{(D)}\ 2^{\frac{5}{4}}\qquad\mathrm{(E)}\ 2^{\frac{3}{2}}$

Solution

Looking at the coefficients, we are immediately reminded of the binomial expansion of ${\left(x+1\right)}^{4}$.

Modifying this slightly, we can write the given equation as: \[{\left(z+i\right)}^{4}=1+i=2^{\frac{1}{2}}\cos \frac {\pi}{4} + 2^{\frac{1}{2}}i\sin \frac {\pi}{4}\] We can apply a translation of $-i$ and a rotation of $-\frac{\pi}{4}$ (both operations preserve area) to simplify the problem: \[z^{4}=2^{\frac{1}{2}}\]

Because the roots of this equation are created by rotating $\frac{\pi}{2}$ radians successively about the origin, the quadrilateral is a square.

We know that half the diagonal length of the square is ${\left(2^{\frac{1}{2}}\right)}^{\frac{1}{4}}=2^{\frac{1}{8}}$

Therefore, the area of the square is $\frac{{\left( 2 \cdot 2^{\frac{1}{8}}\right)}^2}{2}=\frac{2^{\frac{9}{4}}}{2}=2^{\frac{5}{4}} \Rightarrow D.$

See Also

2008 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 22
Followed by
Problem 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png